2007 TE Session Outline

From RoboJackets Wiki
Revision as of 13:52, 20 July 2007 by Stefan (talk | contribs) (Manufacturing and Safety)
Jump to navigation Jump to search

This is the outline for both the 2007 basic and advanced Technology Enrichment sessions.

Basic Sessions

Introduction

Date: 09/11/2007

  1. Welcome to 2007 TE Sessions and to Tech
    1. Info about RoboJackets
    2. Key people and contacts during the sessions
    3. Info about sponsors
    4. Info about this year vs. last year
    5. Show them where to get power points and materials on our site
      1. On our website in TE sessions (there will be a page for materials and such)
  2. What is a robot
    1. Types
  3. Robots in real life
    1. Applications
      1. Commercial / Industrial
        1. Roomba
        2. Kuka
      2. Government / Military
        1. Samsungs Sentry in the DMZ
        2. UAV's border patrol, communication, traffic reports
        3. Bomb defusing
        4. Rescue
      3. Research
        1. DARPA
        2. NASA
        3. Telescopes
      4. Robotics at tech
        1. Borg Lab
        2. RIM
        3. GTRI
        4. UAV Lab
        5. others
      5. Our robots
        1. Candi
        2. 1 or 2 RoboCup
  4. End with our goals and aspirations
    1. Take questions

Intro to Mechanical Engineering

Date: 09/18/2007

Mechanical Power Transmission

Date: 09/25/2007

  1. What is power
    1. Physics
      1. Work x time = force x velocity
    2. Idea
      1. Make your motors useful
  2. Mechanisms
    1. Gears
      1. How they work
        1. Teeth
        2. Pitch diameter
    2. Ratio
      1. What it means
      2. How to calculate
        1. Teeth to teeth
    3. Belts
      1. Types
        1. V Belt
        2. Timing Belt
      2. How they work
        1. V Belt - Fits in a wheel that has groove
        2. Timing belt - Have notches
        3. Goal when using keep as much contact as possible between belt and wheel (sort of)
      3. How to calculate
        1. Diameter to diameter
    4. Chains and Sprockets
      1. How they work
        1. Links
        2. Master links
        3. Numbering (what it means)
        4. Standard sizes (lengths etc)
        5. Goal when using ...
      2. Big v. Small
        1. Big
          1. Stronger
          2. Less efficient
        2. Small
          1. Weaker
          2. More efficient
      3. How to calculate
        1. Diameter to diameter
    5. Pulleys
      1. How they work
    6. Special
      1. Rack and Pinion
        1. How they work
      2. Worm Gears
        1. How they work
  3. Advantages and Disadvantages of each
    1. Gears
      1. Weight
        1. You will be reducing them
      2. Location
        1. Motor is close to output
      3. Easier to work with
        1. Don't have to tension
    2. Belts
      1. Tensioning
      2. Location
        1. Motor can be much farther away from output
      3. Weight
        1. Don't need to remove mass
      4. Skipping
    3. Chains
      1. Tensioning
      2. Location
        1. Motor can be much farther away from output
      3. Slack
        1. Less efficient than gears
      4. Weight
        1. Don’t need to remove mass
    4. Special
      1. Rack and Pinion
        1. Linear motion
      2. Worm Gears
        1. High torque
          1. Cant back drive (in theory but teeth can break...)
  4. Demos
    1. Gears
      1. C4's Gearbox and Lego Demo
    2. Belts
      1. C4’s Panning Turret (ghetto)
    3. Chains
      1. C4's drive module
    4. Pulleys
      1. ?
    5. Special
      1. Rack and Pinion
        1. Lego
      2. Worm
        1. Lego
  5. Activities
    1. Build a gear box with a ratio of X (lego)
    2. Allow groups to come up and see C4’s various aspects.
    3. ??
  6. What to expect
    1. A combination of these on your bot (not just one)
    2. Be prepared to chop of some weight

Drive Types

Date: 10/02/2007

Manipulation

Date: 10/09/2007

Manufacturing and Safety

Date: 10/16/2007

  1. Design Tools
    1. Brainstorming
      1. Strategy
        1. Idea cloud
        2. Function tree
          1. Organizes possible robot functions during competition
      2. Robot designs
        1. Morpgological chart
    2. Evaluation
      1. Objective weighting based on strategy
      2. Evaluation talbe
        1. considers importance of robot characteristics based on selected strategy
    3. Technical Drawing
      1. Last step before fabrication
      2. Can use anything from simensioned sketchees to 3D models
      3. Important to shot not only individual part dimensions but also how it fits into the overall design
  2. Fabrication
  3. Safety

Pneumatic / Fluid Power

Date: 10/23/2007

Electrical Power

Date: 10/30/2007

Programming

Date: 11/06/2007

Success in FIRST / Cookout

Date: 11/10/2007

Advanced Sessions

Technical Design

Date:

  1. CAD vs. Solid modeler
    1. Autodesk AutoCAD
    2. Eagle CAD
    3. Autodesk Inventor
    4. UGS Solid Edge
    5. Dassult Systems CATIA
  2. Reading technical drawings
    1. Multi views
    2. Isometrics
  3. Properly dimensioned vs. bad
  4. Basics of Autodesk Inventor
    1. How to make a part
      1. Constraining sketches
      2. Extrusions / Cuts
      3. Holes
      4. Importance of placing holes for bolts
    2. Assembly
      1. Mating / Constraining
      2. Projecting geometry
    3. Output a drawing
      1. 3 view
      2. Placing dimensions
      3. What a machine shop might want from you

Motor Control

Date:

Adv. Mechanical Power Transmission

Date:

Topics in Autonomous Control

Date:

Machine Vision

Date:

Manipulation

Date: and (2 weeks)