RoboCup: Kicker Board 2013
Contents
Overview
This is an overview of all the features and concepts on the 2013 kicker board made for the Robocup competition by the electrical team of Georgia Institute of Technology'srobocup team. This board's purpose is to contain all of the electric components to power a solenoid, to provide a working kick to play soccer with. This wiki be used to farmiliarize new members of robocup with how the kicker board works and learn other important facts about the board. If there are any questions about any of the concepts that we don't explain please refer to the references we have provided.
Safety and Handling
This board uses high voltage. Be extremely careful around high voltage. It can cause considerable damage. Until you know that the capacitors are discharged, assume that they are still charged up to 250V. The best way to tell if your board is discharged is that there is one red LED on the back of the the kicker board. This is the death light. It is powered directly by the capacitors. If this light is on, you should not touch the board. The best way to discharge the capacitors is to push the button on the rear of the control board and then immediately power off the robot. This will cause the robot to manually kick, discharging the capacitors. Then turn off the power before it can build enough charge to cause much of a shock if any. This button can only be used if the robot is on, so make sure a kick is made. Also if the LED is on faintly it will likely not cause much of a shock, but you should either discharge it or wait for the LED dissipate the remaining energy.
Kicker Charger
Transformer Overview
In the charger design of our kicker board a transformer is used to increase the voltage potential of capacitors. For the design of this board we can think of a transformer as two inductors with a shared potential energy. This means that we can transfer energy from one inductor to the other freely. These inductors do not have to be identical. In fact it is the difference in inductance that allows the transistor to magnify voltage. For the charger of the transformer, we use the relationship that E = 1/2LI^2[1], where L is the inductance and I is the current. This allows us to chage the current by having a difference in inductance acording to an inverse square root relationship. We can use this current multiplication to create a voltage multiplication effect. This is an ideal transformer, so in reality not all of the energy is transferred.
Flyback Converter
The board currently uses a flyback[2]or buck-boost converter along with a transformer to create a very high voltage which we can store in the capacitors. A boost converter allows the output voltage to increase above what can be supplied as input. A very high voltage potential must be reached as soon as possible. This is done through a process of transferring potential energy.
First the supply voltage charges the transformer to some potential energy specified by the LT3757. The load loop is effectively locked in place by the potential of our capacitive load and a diode which prevents current from being discharged over the capacitors. The supply loop is then locked with a transistor by the LT3757. This forces all of the potential gathered in the transistor into the load loop. Not all of potential energy is transferred because there is already potential energy on the capacitors from the last round of charging. Once enough energy has been transferred to the capacitors the LT3757 will open up the supply loop. This restarts our process recharging the supply loop.
LT3757/Converter controller
The converter controller that is on the board is a LT3757[3]. This chip manages the switching of our Buck-boost converter. When the supply loop has reached full capacity it will lock the supply loop. When the potential is transferred to the capacitors the supply loop is again unlocked. The LT3757 is an integrated circuit that uses inputs to determine precisely when to switch in order maximize power transfer. We can not do this manually or with our FPGA and CPU because of the asymptotic nature of capacitors and inductors. Unfortunately the LT3757 was designed for a resistive load, and while it can handle capacitive loads quite well there may be other chips that do it even better. We are looking at other possibilities and may improve on this component in the future.
Other converter methods
It has been suggested that other converter types may be able to charge the capacitors faster. A boost converter[4]may allow us to create a higher voltage potential. This would allow a faster transfer from the inductor to the capacitor. The other converter that has been looked at is the cuk converter[5]. A cuk converter might be able to allow the capacitors to be charged while other inductors are charging which would increase the rate of power transfer without raising the voltage across the capacitor. The electrical team is looking at these and other possibilities to improve on these systems in the future
Voltage Monitor
This component is covered in detail on the control board page.
Capacitor Mounting
The capacitors on this board have been mounted in a very odd way in order to save space. The board has a mini board that is removed before population leaving a large space in the board. This space is filled by three capacitors mounted parallel to the board. These capacitors are mounted by soldering one lead to each side of the board and using enough solder that it will hold the capacitors weight. This approach may seem very odd, but saves space and allows us to organize the robot in layers and stay out to the mechanical base of the robot.
2008 model
The 2013 kicker boards have been phasing out the previous models of the 2008 boards and the 2011 boards. The 2013 board is based off of the 2011 board with updating some parts and adding a voltage monitor for the capacitors. However the 2008 board was very different. While the 2011 and 2013 kicker boards have a chip port the 2008 boards and robots could not chip the ball. We have removed the chiping components from certain boards to avoid confusion with ports and plugs. Additionally some of the 2008 model 2013 boards do not have voltage monitoring components because the control boards are unable to read the voltage monitor in 2008 mode
References
- http://en.wikipedia.org/wiki/Inductor#Stored_energy
- http://en.wikipedia.org/wiki/Flyback_converter
- http://cds.linear.com/docs/en/datasheet/3757Afd.pdf
- http://en.wikipedia.org/wiki/Boost_converter
- http://en.wikipedia.org/wiki/%C4%86uk_converter
Parts list
Disclaimer: Some of the parts are not used in the final kicker board, but are printed on the mini board that is removed to make room for the capacitors.
Part Value Package Library Position (inch) Orientation
BZ1 PS12 PS12 tdk (1.09 2.345) R90
C1 10uF C0805 rcl (0.68 2.065) R270
C2 100nF C0603 rcl (1.31 0) MR180
C3 1uF C0603 rcl (2.85 3.685) MR180
C4 47nF C0603 rcl (6.655 0.025) R270
C5 100nF C0603 rcl (1.31 0.51) MR180
C6 100nF C0603 rcl (4.415 2.09) MR180
C7 47nF C0603 rcl (0.81 0.67) R270
C8 10nF C0603 rcl (3.98 2.03) MR0
C9 2.2nF C0603 rcl (4.36 1.97) MR270
C10 100nF C0603 rcl (1.31 0.78) MR180
C11 10nF C0603 rcl (4.22 1.845) MR270
C12 220nF C0603 rcl (4.285 2.205) MR180
C13 100pF C0603 rcl (4.595 2.165) R90
C14 47nF C0603 rcl (0.79 0.83) R180
C15 27pF C0603 rcl (4.095 1.85) R90
C16 27pF C0603 rcl (4.345 1.85) R270
C17 100nF C0603 rcl (4 1.925) MR270
C18 33pF C0603 rcl (4.34 1.685) R270
C19 10nF C0603 rcl (3.75 1.285) R270
C20 1nF C0603 rcl (3.585 1.285) R270
C21 100nF C0603 rcl (0.355 2.885) MR270
C22 47nF C0603 rcl (0.575 3.13) R90
C23 100nF C0603 rcl (2.012 1.366) MR0
C24 100nF C0603 rcl (2.082 1.465) MR90
C25 100nF C0603 rcl (2.558 0.649) MR270
C26 100nF C0603 rcl (0.66 2.885) MR270
C27 47nF C0603 rcl (0.895 3.13) R90
C28 100nF C0603 rcl (0.98 2.885) MR270
C29 47nF C0603 rcl (1.215 3.13) R90
C30 100nF C0603 rcl (3.425 2.885) MR270
C31 1uF C0603 rcl (0.576 2.472) R0
C32 47nF C0603 rcl (3.645 3.13) R90
C33 100nF C0603 rcl (3.73 2.885) MR270
C34 1uF C0603 rcl (0.577 2.287) R0
C35 47nF C0603 rcl (3.965 3.13) R90
C36 100nF C0603 rcl (4.05 2.885) MR270
C37 47nF C0603 rcl (4.285 3.13) R90
C38 100nF C0603 rcl (6.56 1.015) R0
C39 47nF C0603 rcl (6.725 -0.005) R0
C40 500R07S1R8BV4T C0402 rcl (4.595 2.01) R270
C41 1uF 35V C0805 rcl (0.501 1.379) R0
C42 100uF 25V PANASONIC_E rcl (0.44 1.17) R0
C43 10nF C0603 rcl (0.448 1.589) R270
C44 22uF 6.3V C1206 rcl (0.787 1.784) R0
C45 100nF C0603 rcl (6.735 1.12) R0
C46 100nF C0603 rcl (2.049 1.899) MR0
C47 100nF C0603 rcl (2.057 1.58) MR0
C48 100nF C0603 rcl (1.54 1.69) MR270
C49 100nF C0603 rcl (1.559 1.472) MR90
C50 100nF C0603 rcl (1.912 1.965) MR0
C51 100nF C0603 rcl (1.648 1.367) MR180
C52 100nF C0603 rcl (1.82 3.26) MR180
C53 100nF C0603 rcl (1.835 0.91) MR0
C54 100nF C0603 rcl (2.649 2.061) MR270
C55 100nF C0603 rcl (1.71 3.355) R90
C56 100nF C0603 rcl (0.8 1.565) R270
C57 100nF C0603 rcl (1.645 3.02) R270
C58 100nF C0603 rcl (1.755 3.18) R180
C59 2.2nF C0603 rcl (1.735 2.85) R180
C60 100nF C0603 rcl (1.838 1.365) MR0
C61 47nF C0603 rcl (6.745 -0.065) R0
C62 100nF C0603 rcl (6.655 0.025) R0
C63 47nF C0603 rcl (6.655 0.025) R0
C64 100nF C0603 rcl (6.655 1.025) R0
C65 47nF C0603 rcl (6.655 1.025) R0
C66 100nF C0603 rcl (6.655 1.025) R0
C67 100nF C0603 rcl (1.636 1.907) MR180
C68 100nF C0603 rcl (2.082 1.794) MR270
C69 47nF C0603 rcl (6.655 1.025) R0
C70 100nF C0603 rcl (6.655 1.025) R0
C71 100nF C0603 rcl (1.638 1.825) MR180
C72 47nF C0603 rcl (6.655 1.025) R0
C73 470uF 25V PANASONIC_G rcl (0.455 -1.155) R0
C74 470uF 25V PANASONIC_G rcl (1.215 -1.165) R0
C75 470uF 25V PANASONIC_G rcl (-0.355 -1.19) R0
C76 470uF 25V PANASONIC_G rcl (6.655 0.025) R0
C77 100nF C0603 rcl (3.515 1.86) MR0
C78 470uF 25V PANASONIC_G rcl (6.655 1.025) R0
C79 100nF C0603 rcl (3.54 1.78) MR0
D1 MBRX160-TP SOD123 diode (0.522 1.455) R0
D2 MBRX160-TP SOD123 diode (1.854 0.706) MR270
D3 BAS16H SOD323-W diode (0.576 1.791) R0
D7 SMBJP6KE18A-TP SMBJ power (2.095 0.62) R270
F1 2x BK6011 [30A] FUSE_MINI_ATC power (2.215 0.875) R180
F2 SF-1206F100-2 F1206 power (1.985 0.69) MR270
J1 0528520870 0528520870 con-robocup (0.125 2.03) R270
J2 MINI-USB UX60A-MB-5ST con-robocup (4.655 1.7) R180
J3 2MM-2H 2MM-2-H 2mm (2.895 3.79) R0
J4 Molex 0522711179 FH_11_HOR hirose (0.15 0.6) R90
J5 Molex 0522711179 FH_11_HOR hirose (0.15 3.16) R90
J6 Molex 0522711179 FH_11_HOR hirose (4.55 3.16) R270
J7 Molex 0522711179 FH_11_HOR hirose (4.55 0.6) R270
J8 MMCX_RA MMCX_RA radio (4.74 2.19) R0
J9 2MM-3H 2MM-3-H 2mm (1.125 3.79) R0
J10 2MM-6H 2MM-6-H 2mm (1.78 3.79) R0
J11 BATT JST_VH_2_RA jst_vh (3.005 0.095) R0
J12 2MM-4V 2MM-4-V 2mm (0.765 1.04) R270
J13 2MM-4H 2MM-4-H 2mm (0.08 1.32) R90
J14 2MM-4H 2MM-4-H 2mm (0.08 2.675) R90
J15 2MM-4H 2MM-4-H 2mm (4.63 2.44) R270
J16 2MM-4H 2MM-4-H 2mm (4.63 1.08) R270
J17 2MM-8H 2MM-8-H 2mm (2.56 3.79) R0
J18 2MM-4V 2MM-4-V 2mm (1 1.04) R270
J19 JST_VH_2 JST_VH_2_RA jst_vh (0.8 0.41) R0
J20 2MM-5V 2MM-5-V 2mm (1.625 0.33) R90
L1 SDR0403-270KL SDR0403 power (0.62 1.62) R180
L2 HZ0603B102R-10 C0603 radio (1.615 3.145) R270
L3 HZ0603B102R-10 C0603 radio (1.625 3.355) R270
L4 L-07C5N6SV6T R0402 rcl (4.515 2.085) R0
L5 HZ0603B102R-10 C0603 radio (3.88 2.205) MR180
LED1 CHIP-LED0603 led (2.375 2.125) R270
LED2 LED2 5350T5 5350T5 (2.235 -0.05) R180
LED7 LDS-M514RI-RA LDS-M514RI-RA rjrc-7seg-disp (2.555 0.01) R180
P1 SI7141DP POWERPAK_SO-8 rjrc_power_transistors (2.38 0.59) R90
Q1 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (-1.2 1.05) MR0
Q2 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (-0.765 0.315) MR0
Q3 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (-0.955 0.685) MR0
Q4 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (0.5 3.385) MR90
Q5 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (0.82 3.385) MR90
Q6 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (1.14 3.385) MR90
Q7 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (3.57 3.385) MR90
Q8 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (3.89 3.385) MR90
Q9 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (4.21 3.385) MR90
Q10 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (6.655 0.025) R0
Q11 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (6.655 0.025) R0
Q12 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (6.655 0.025) R0
Q13 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (6.655 1.025) R0
Q14 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (6.655 1.025) R0
Q15 BSC072N03LD BSC072N03LD Dual N-Channel MOSFET (6.655 1.025) R0
Q33 FDV304P SOT-23 zetex (3.92 1.355) R90
RT1 22 R0603 rcl (0.755 0.105) MR0
RT2 10.0k R0603 rcl (2.734 2.061) MR270
RT3 220 RA_4_1206 resistor-array (1.6 3.62) MR0
RT4 220 RA_4_1206 resistor-array (0.395 1.815) MR90
RT5 10.0k R0603 rcl (0.243 1.46) R0
RT6 220 RA_4_1206 resistor-array (0.305 0.735) R90
RT7 10.0k R0603 rcl (1.224 1.227) R0
RT8 10.0k R0603 rcl (4.259 1.069) R0
RT9 150 1/8W R0805 rcl (2.7 3.745) MR90
RT10 220 R0603 rcl (1.35 1.17) R0
RT11 NP R0603 rcl (2.42 1.73) R0
RT12 10.0k R0603 rcl (2.42 1.65) R180
RT13 220 R0603 rcl (2.258 2.123) R0
RT14 0 R0603 rcl (0.715 1.93) R0
RT15 0 R0603 rcl (0.64 2.2) R0
RT16 100k R0603 rcl (3 3.755) MR270
RT17 22 R0603 rcl (0.755 -0.015) MR0
RT18 10.0k R0603 rcl (1.31 0.16) MR0
RT19 10.0k R0603 rcl (1.31 0.08) MR0
RT20 22 R0603 rcl (0.755 0.615) MR0
RT21 22 R0603 rcl (0.755 0.495) MR0
RT22 10.0k R0603 rcl (1.31 0.67) MR0
RT23 10.0k R0603 rcl (1.31 0.59) MR0
RT24 22 R0603 rcl (0.755 0.885) MR0
RT25 22 R0603 rcl (0.755 0.765) MR0
RT26 10.0k R0603 rcl (1.31 0.94) MR0
RT27 10.0k R0603 rcl (1.31 0.86) MR0
RT28 220 RA_2_0606 resistor-array (1.63 0.955) R90
RT29 220 RA_4_1206 resistor-array (1.425 2.345) R90
RT30 22 RA_4_1206 resistor-array (1.35 3.13) R0
RT31 22 R0603 rcl (0.515 3.13) MR90
RT32 22 R0603 rcl (0.435 3.13) MR90
RT33 10.0k R0603 rcl (0.66 2.755) MR270
RT34 10.0k R0603 rcl (0.47 2.655) MR180
RT35 22 R0603 rcl (0.835 3.13) MR90
RT36 22 R0603 rcl (0.755 3.13) MR90
RT37 10.0k R0603 rcl (0.98 2.755) MR270
RT38 10.0k R0603 rcl (0.75 2.655) MR180
RT39 22 R0603 rcl (1.155 3.13) MR90
RT40 22 R0603 rcl (1.075 3.13) MR90
RT41 10.0k R0603 rcl (1.3 2.755) MR270
RT42 10.0k R0603 rcl (1.1 2.67) MR180
RT43 220 RA_2_0606 resistor-array (0.975 2.28) MR0
RT44 220 R0603 rcl (2.24 0.14) R90
RT46 22 R0603 rcl (3.585 3.13) MR90
RT47 22 R0603 rcl (3.505 3.13) MR90
RT48 10.0k R0603 rcl (3.73 2.755) MR270
RT49 10.0k R0603 rcl (3.54 2.655) MR180
RT50 22 R0603 rcl (3.905 3.13) MR90
RT51 22 R0603 rcl (3.825 3.13) MR90
RT52 10.0k R0603 rcl (4.05 2.755) MR270
RT53 10.0k R0603 rcl (3.82 2.655) MR180
RT54 22 R0603 rcl (4.225 3.13) MR90
RT55 22 R0603 rcl (4.145 3.13) MR90
RT56 10.0k R0603 rcl (4.37 2.755) MR270
RT57 10.0k R0603 rcl (4.17 2.67) MR180
RT58 220 RA_2_0606 resistor-array (4.155 2.57) MR90
RT59 22 RA_4_1206 resistor-array (1.665 0.535) R270
RT61 22 R0603 rcl (6.655 0.025) R0
RT62 22 R0603 rcl (6.655 0.025) R0
RT63 10.0k R0603 rcl (6.655 0.025) R0
RT64 10.0k R0603 rcl (6.655 0.025) R0
RT65 22 R0603 rcl (6.655 0.025) R0
RT66 22 R0603 rcl (6.655 0.025) R0
RT67 10.0k R0603 rcl (6.655 0.025) R0
RT68 10.0k R0603 rcl (6.655 0.025) R0
RT69 22 R0603 rcl (6.655 0.025) R0
RT70 22 R0603 rcl (6.655 0.025) R0
RT71 10.0k R0603 rcl (6.655 0.025) R0
RT72 10.0k R0603 rcl (6.655 0.025) R0
RT73 220 RA_2_0606 resistor-array (6.655 0.025) R0
RT74 22 RA_4_1206 resistor-array (3.43 2.95) R90
RT76 22 R0603 rcl (6.655 1.025) R0
RT77 22 R0603 rcl (6.655 1.025) R0
RT78 5.6k R0603 rcl (1.195 3.63) R180
RT79 10.0k R0603 rcl (6.655 1.025) MR90
RT80 NP R0603 rcl (3.265 1.42) R180
RT81 68k R0603 rcl (2.5255 0.7485) MR0
RT82 10.0k R0603 rcl (2.638 0.649) MR90
RT83 52.3k R0603 rcl (0.27 1.745) R90
RT84 10.0k R0603 rcl (0.383 1.766) R180
RT85 220 RA_4_1206 resistor-array (0 3.1) MR0
RT86 220 RA_4_1206 resistor-array (4.335 2.625) R270
RT87 220 RA_4_1206 resistor-array (6.375 0.215) MR180
RT88 220 RA_4_1206 resistor-array (2.07 3.63) MR0
RT89 220 RA_2_0606 resistor-array (0.225 1.225) MR270
RT90 220 RA_2_0606 resistor-array (0.175 2.355) MR0
RT91 220 RA_2_0606 resistor-array (4.335 2.51) R90
RT92 220 RA_2_0606 resistor-array (4.49 1.135) MR90
RT93 27 RA_2_0606 resistor-array (4.23 1.26) R180
RT94 1.5k R0603 rcl (3.665 1.285) R90
RT95 56k R0603 rcl (4.285 2.205) R180
RT96 10.0k R0603 rcl (1.8 2.765) R180
RT97 10.0k R0603 rcl (1.915 2.845) R0
RT98 100k R0603 rcl (2.375 0.41) MR0
RT99 10.0k R0603 rcl (6.655 1.025) R0
RT100 22 R0603 rcl (6.655 1.025) R0
RT101 22 R0603 rcl (6.655 1.025) R0
RT102 0 R0603 rcl (0.565 1.9) MR0
RT103 220 RA_2_0606 resistor-array (0.395 1.625) MR270
RT104 220 RA_4_1206 resistor-array (1.87 1.06) R0
RT105 NP R0603 rcl (3.52 1.425) MR180
RT106 10.0k R0603 rcl (6.655 1.025) R0
RT107 220 R0603 rcl (4.48 1.57) R90
RT108 330k R0603 rcl (4.32 1.36) R180
RT109 330k R0603 rcl (4.425 1.795) R270
RT110 1.5k R0603 rcl (4.12 1.255) R180
RT111 10.0k R0603 rcl (4.48 1.42) R90
RT112 10.0k R0603 rcl (2.65 1.875) MR90
RT113 0 R0603 rcl (0.575 2.38) R180
RT114 0 R0603 rcl (0.575 2.565) R180
RT115 NP R0603 rcl (2.385 1.86) R0
RT116 10.0k R0603 rcl (3.84 1.8) R270
RT117 10.0k R0603 rcl (6.655 1.025) R180
RT118 22 R0603 rcl (6.655 1.025) R90
RT119 22 R0603 rcl (6.655 1.025) R90
RT120 10.0k R0603 rcl (6.655 1.025) R180
RT121 10.0k R0603 rcl (6.655 1.025) R0
RT122 220 RA_2_0606 resistor-array (6.355 1.155) MR0
RT123 22 RA_4_1206 resistor-array (6.655 0.025) R0
RT125 10 R0603 rcl (1.985 0.245) R0
RT126 220 RA_4_1206 resistor-array (2.635 0.345) MR0
RT127 220 RA_4_1206 resistor-array (1.32 1.045) R90
RT128 220 RA_4_1206 resistor-array (3.735 2.525) MR0
RT129 220 RA_4_1206 resistor-array (6.655 0.025) R90
RT130 220 RA_4_1206 resistor-array (6.655 1.025) R270
RT131 22 RA_4_1206 resistor-array (6.655 1.025) R0
S1 SWS004 SMS-004 smd-special (2.795 0.94) R0
S2 B3F-31XX switch-omron (0.34 3.77) R180
S3 G3T12AP_SPDT G3T12AP_SP switch-robocup (1.975 0.005) R270
S4 KMR2 KMR2 switch-robocup (4.07 1.035) R180
S5 94HBB16RAT HEX-RA-2C switch-robocup (3.38 3.865) R270
U$24 MMBD4448HTW MMBD4448HTW Diode-Array (1.54 0.535) R90
U$25 MMBD4448HTW MMBD4448HTW Diode-Array (1.27 2.965) R90
U$26 MMBD4448HTW MMBD4448HTW Diode-Array (3.58 2.96) R270
U$27 MMBD4448HTW MMBD4448HTW Diode-Array (6.655 0.025) R0
U$28 MMBD4448HTW MMBD4448HTW Diode-Array (6.655 1.025) R0
U1 XC3S100E TQFP144 xilinx (1.817 1.636) R0
U2 M25P10 SO08 st_micro (2.504 2.062) MR0
U3 LM2734 SOT23-6L power (0.33 1.59) R180
U4 MCP1824T-1202E/OT SOT23-5 power (0.415 2.34) R270
U5 MCP1824T-2502E/OT SOT23-5 power (0.415 2.525) R270
U6 FAN7380 SO08 microchip (-1.125 1.6) MR270
U7 AT91SAM7S256 SQFP-S-10X10-64 at91sam7 (3.455 1.765) R90
U8 MCP1824ST-3302E/DB SOT223 power (0.46 2.02) R90
U9 FAN7380 SO08 microchip (-1.23 1.475) MR270
U10 CC1101 QLP20 radio (4.2 2.06) R0
U11 FAN7380 SO08 microchip (-1.11 1.18) MR270
U12 FAN7380 SO08 microchip (0.5 2.88) MR0
U13 0896BM15A0001 0896BM15A0001 radio (4.415 2.05) R0
U14 FAN7380 SO08 microchip (0.82 2.88) MR0
U15 FAN7380 SO08 microchip (1.14 2.88) MR0
U16 FAN7380 SO08 microchip (3.57 2.88) MR0
U17 FAN7380 SO08 microchip (3.89 2.88) MR0
U18 FAN7380 SO08 microchip (4.21 2.88) MR0
U19 IMU3000 IMU3000 inertial-sensors (1.805 3.015) R180
U20 KXTF9-2050 KXTF9 inertial-sensors (1.815 3.315) R270
U21 FAN7380 SO08 microchip (6.655 0.025) MR0
U22 FAN7380 SO08 microchip (6.655 0.025) R0
U23 FAN7380 SO08 microchip (6.655 0.025) R0
U24 FAN7380 SO08 microchip (6.655 1.025) MR0
U25 FAN7380 SO08 microchip (6.655 1.025) R0
U26 FAN7380 SO08 microchip (6.655 1.025) R0
X1 18.432MHz XTAL_LCC oscillator (1.925 1.12) MR0
X2 644-1055-1-ND XTAL-3.2X2.5 radio (4.22 1.85) R180