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Absmrcf-A simple technique is described to speed up opti- 
mal path planning on Euctideansost grids and lattices. Many 
mhot navigation planning algorithms build approximate grid 
representations of the environment and use Djiktra’s algo- 
rithm or A* to search the multing embedded graph for an 
optimal path between given start and goal locations. However, 
the classical implementations of these search algorithms were 
designed to h d  optimal paths on arbitrary graphs with edges 
having arbitrary positive weight values. 

This paper explains how to exploit the stmelure of optimal 
paths on Euclidean-cost grids and lattices in order to reduce 
the number of neighboring nodes considered during a node 
expansion step. The mul t  is a moderate reduction in the 
total nodes examined, which reduces the overall memory 
requirements and computational cost of the search. These im- 
provements increase the efficiency of optimal mho1 navigation 
planning on 2D and 3D grids, and the technique generalizes 
to any other search problem that involves h d h g  optimal 
paths on grids and lattices in higher dimensions whose edge 
costs obey the triangle inequality. 

I. INTRODUCTION 

Classical grid search is a well-known topic in robotics 
and artificial intelligence research, and has strong connec- 
tions to research in dynamic programming, optimization, 
and algorithms for computer networks. Because the storage 
and computational costs for grids generally grows expo- 
nentially according lo the size and dimension of the grid, 
their use has generally been Limited to low dimensional 
problems, particularly in robot path planning. However, 
grids in higher dimensions have recently been reconsidered 
as a deterministic alternative to path planning based on 
random sampling [I]. 

We describe a simple technique to speed up optimal 
path planning on Euclidean-cost grids and lattices. This 
technique does not improve the fundamental exponential 
growth of the cost of grid search, but rather improves the 
‘tonstant factor’’ in the running time (see Section V). As 
an example, many robot navigation planning algorithms 
build approximate grid representations of the environment 
and use Djikstra’s algorithm or A* to search the resulting 
embedded graph for an optimal path between given start 
and goal locations. The classical implementations of these 
search algorithms were designed to find optimal paths on 
arbitrary graphs with edges having arbitrary positive weight 
values. By contrast, embedded graphs on Euclidean-cost 
grids have a fixed number of neighboring nodes and known 
edge weights. This information can be utilized to improve 
the overall performance of a number of computations re- 
lated to optimal path planning between grid locations. With 
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Fig. 1. Reducing neighbor expansions on 2D grids (a) me full 
neighbor set is always used during rraditianrl Dijbm or A’ search 
(b) Optimized expansion Of B node whose parent is to the ”West”. (e) 
@ W e d  expansion of a node with a ”xluthweslem” parent. 

minimal overbead, more efficient versions of Dijkslra’s 
algorithm or A* search customized for grids can be easily 
implemented. 

An improved search technique for the special case of 
navigation path planning on a 2D grid was originally 
presented in (21. This paper generalizes that result and 
explains how to exploit the structure of optimal paths 
on Euclidean-cost grids and lattices in order to reduce 
the number of neighboring nodes considered during a 
node expansion step, the key operation in graph search 
algorithms. Ttie result is a reduction in the total nodes 
that must be examined and ultimately stored in the priority 
queue. This produces a moderate to significant reduction 
in the overall memory usage and computational cost of the 
search depending upon the difficulty of the planning query. 

The technique in this paper applies to grids and lattices 
with edges between diagonally-adjacent grid points whose 
relative costs obey the Viangle inequality. For example, 
using the approximate Euclidean distance between grid 
points is one such cost assignment. Intuitively, this means 
that edges directly connecting two grid point nodes will 
always be of lower cost than all alternate paths passing 
through intermediate nodes. Experiments conducted on test 
examples have shown significantly improved computational 
efficiency for robot navigation planning on 2D and 3D 
grids, as well as on Euclidean-cost grids and lattices in 
higher dimensions. However, the benefit of the optimiza- 
tion diminishes as the dimension d increases, and becomes 
negligible at around d > 12. 

The rest of the paper is organized as follows: Section 
gives an overview of related research, Section Ill discusses 
issues related to path search on grids, Section N presents 
an optimized node expansion technique for grids, Section V 
contains analysis, Section VI presents experimental results, 
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(a) Full neighbor set 

Fig. 2. Reducing neighbor expansions on 3D @ds 

and Section W concludes with a summary discussion. 

11. BACKGROUND 

The theory and analysis of path planning algorithms 
is fairly well-developed in the robotics literature, and is 
not discussed in detail here. For a broad background in 
motion planning, readers are referred to 131. For any path 
planning technique, it is important to minimize the number 
of degrees of freedom (DOFs), since the time complexity of 
known algorithms grows exponentially with the dimension 
of the C-space [41. A complete planning algorithm will 
in finite time always find a path if one exists, and report 
failure (also in finite time) if no path exists. Complete 
algebraic solutions exist for the general path planning prob- 
lem [SI, 161, but have yet to be implemented, For problems 
in low-dimensional configuration spaces in which the shape 
of C-obstacles is known, complete or resolution-complete 
methods have been devised, such as exact-cell decomposi- 
tion, visibility graphs, or approximate cell-decomposition 
(see 131). A popular technique for mobile robot navigation 
consists of discretizing the environment into a regular 2D 
grid and marking cells which are obstructed by obstacles. 
The navigation planning problem can then be cast as a 
search problem on the embedded graph defined by the grid. 
This is one instance of an approximate cell-decomposition 
planning method, and hy adjusting the fineness of the 
discretization of the grid, it is possible to devise resolution- 
complete planning algorithms. 

A. Searching for Shonest Paths on Graphs 

The problem of calculating shortest paths on a weighted 
graph arises very often in Computer Science. A number 
of classical graph search algorithms have been developed. 
with two popular ones being Dijkstra's algorithm 171, 
and A* search 181. Both algorithms return an optimal 

path, and can be considered as special forms of dynamic 
programming [91. A* operates essentially the same as 
Dijkstra's algorithm except that a heuristic function that 
optimistically estimates the cost to the goal is added to the 
cost of a node when inserting it into the priority queue. This 
causes the algorithm to expand more promising nodes first, 
potentially saving a significant amount of computation. For 
a discussion of the optimality of A*, see [IO]. Using the 
heuristic function alone results in hest-first search (BFS), 
which is a greedy algorithm that can sometimes vastly 
reduce computation times compared to Dijkstra's algorithm 
or A*. However, path optimalily is no longer guaranteed. 
Large graphs typically benefit greatly from the use of A* or 
BFS along with a reasonable heuristic function. There also 
exists a linear time algorithm due to Henzinger, Klein, and 
Rao for computing all shortest paths from a single source 
in large planar graphs [I 11. However, due to the ovemead 
involved in running the algorithm, the potential execution 
time savings may only be realized for very large graphs. 
Other search strategies of interest cache information for 
dynamic or unknown environments in order to avoid having 
to search from scratch each time, such as the D* (Dynamic 
A*) algorithm [IZ]. 

111. PLANNING ON GRIDS AND LATTICES 

Grids and lattices implicitly define a connected graph, 
so path planning between two grid points can be simply 
reduced to graph search. However, the classical imple- 
mentations of these search algorithms were designed to 
find optimal paths on arbitrary graphs with edges having 
arbitrary positive weight values. By contrast, embedded 
graphs have a fixed number of neighboring nodes. In 
addition, edge weights typically consist of known constant 
values, such as in thc case of Euclidean-cost grids. This 
additional information c,a" he exploited to improve the 
efficiency of planning on grids, specifically for cases in 
which edges between diagonally-adjacent grid points are 
present and whose edge costs obey the triangle inequality. 

A. Mathematical Formulation 

Although our optimizations are most effective for grids 
of two or three dimensions, we will adopt notation that 
generalizes to grids (lattices) of arhitrary dimension. Let p 
be a point on a grid B of dimension d. Specifically, p is 
a vector of size d of integer values which range from the 
minimal and maximal extents of the grid along each axis: 

P = b i , Q z , . . . , Q d l ,  Q, E &  

Each Ai is the set of all integers on the range 
[mini, . . . , m ~ x i ] .  For simplicity, let us assume that the 
range of integer grid component values along each axis 
is uniform and given by the set = {l, 2, .  . . , N } ,  i E 
{1 ,2 , .  . . , d} .  Thus, a grid B of dimension d will have N d  
distinct grid points p E A1 x dz x . . . x Ad. 

Each grid point p has a fixed set of neighboring points. 
For the moment, let us ignore the special case of points 
on the grid boundary, and focus on interior grid points. 
Each interior point p has a set of neighboring points 
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Fig. 3. Searching an embedded graph dehed by a grid 

whose grid coordinates differ only by -1, 0, or +1 for 
each component. Let us define the neighbors of p ,  as 
the set Np of all grid points that have all component 
values differing only by [ - l , O ,  tl]. Each interior point has 
exactly 3* - 1 neighbors distinct from itself. The number 
of grid component values that differ from p is one measure 
of the “closeness” of that neighbor. At this point, we will 
make a special distinction between straight neighbors and 
diagonal neighbors. Let us define the straight neighbors 
of p as the set Sp c Np of neighboring pints  whose grid 
cwrdinates differ only hy a single component. There are 
exactly 2d straight neighbors for each interior grid point, 
namely two for each component axis. All other neighbors 
will be referred to as diagonal neighbors, and make up the 
set Vp = Np - S,. 

More generally, we can partition the set Np according to 
the number of component values that differ from p .  Those 
that differ by a single value form the set Np(l) .  which is 
just the straight neighbors S,. Similarly, we define the sets 
Np(2), Np(3), up to Np(d). These sets are analogous to 
the set partitions defined hy the hamming distance measure, 
which is used to compare strings of binary digits. Note that 
the special case Np(0) is the point p itself, and is usually 
implicitly omitted from the set Np. 

B. Robot Navigation Planning 

In the case of robot navigation planning on a 2D grid, 
cells in an occupancy grid are marked as either FREE 
or NOT-FREE, depending upon whether or not the cor- 
responding location in the environment represents a valid 
location for the mbot. Each cell in the grid corresponds 
to a node in the embedded graph, and edges are placed 
between pairs of neighboring cells that are both FREE. 
By searching the graph we can conservatively determine 
whether or not a collision-free path exists from the start 
location to the goal location at the current grid resolution. 
Considering only straight neighhors limits us to searching 
motions along the cardinal directions N, S, E, W. ’Ibis 
is sometimes referred to .as 4-neighbor search. However, 
in order to produce shorter paths, diagonal motions are 
usually also considered (8-neighbor search). Fig. 3 shows 
a small example of an embedded graph defined by a 2D 
grid. By assigning a relative cost to each edge we can 
search for a path that connects the start and goal while 
minimizing a cost function defined by the edge weights. 

C. Assigning Edge Weights 
In the case of Euclidean-cost grids, all edge weights 

approximate the relative Euclidean distance between adja. 
cent grid points. For example, if all edges between straight 
neighbors are assigned a relative cost of 1, then edges 
between diagonal neighbors on a 2D grid could be assigned 
a relative weight of \/z = 1.4. For the 3D case, Np(2) and 
N (3) diagonal neighbors are assigned weights of fi and & respectively. F O ~  the general case, edges connecting 
a grid point p to all neighboring points q E Np(L) are 
assigned a relative weight: 

I lp-qllz = VG : 4 E Np(k) , E {I,% . . . , d }  

Because these fixed costs obey the triangle inequality, the 
node expansion step of traditional graph search algorithms 
can be made more efficient. 

IV. OPTIMIZING GRID SEARCH 

In this section, we show how to speed up path searching 
on grids with suaight and diagonal edge weights assigned 
as described in the previous section. The hasic idea is 
to modify A* and Dijkstra’s algorithm so as to reduce 
the overall total number of expected neighboring node 
expansions by limiting the number of neighboring cells 
inserted into the priority queue. We can do so by exploiting 
the geometry of optimal paths on a grid with Euclidean 
edge weights. 

For example, consider the case of an optimal 8-neighbor 
path computed on a 2D grid. The minimum angle an 
optimal path on a 2D grid can evcr form with itself is 90 
degrees. This fact is apparent by noting that any 8-neighbor 
path that forms an angle smaller than 90 degrees can be 
made shorter by “cutting comers’’ (see Fig. 4). Because of 
this, we can effectively limit the number of neighboring 
node expansions by ignoring those cells whose inclusion 
would produce a path with an angle less than 90 degrees. 
By taking into account which direction a given node was 
expanded from, we can reduce the number of potential 
future node expansions from 8 to 3 for Np( l )  neighbors 
and from 8 to 5 for Np(2) neighbors. This is graphically 
illustrated in Fig. 1. For example, suppose we extract a 
node from the queue that was inserted when its neighbor 
node to the “west” was expanded (Fig. l(hjj. Obviously, 
there is no need to consider the node to the west when the 
current node is expanded. In addition, there is no need 
to consider the neighbor nodes to the northwest, north, 
southwesr and south. This is because the edges connecting 
them to the current node cannot be p m  of an optimal path 
that includes the edge between the current node and its 
western neighbor. 

A similar argument can be made for the case of paths 
on 3D grids with Euclidean weights. Fig. 2 graphically 
illustrates the different cases that arise depending upon the 
relative location of the parent node. The parent is the grid 
location that corresponds to the neighboring node from 
which the current node was originally expanded from. In 
general, when a node corresponding to a grid point p is 
expanded, its parent point q along with all of the the mutual 
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neighbors of q can be excluded. To see why, let r be a 
mutual neighbor of both p and q. that is: r E Np n Nq. 
The edge formed between q and p, and p and r cannot 
simultaneously he a member of an optimal path, because 
the edge between q and r could be used instead, and will 
always be of lower cost due to the aiangle inequality: 

There are several other properties of optimal paths on 
grids with Euclidean weights that are useful to note: (I) 
An optimal path will generally not be unique, as there will 
likely he several optimal paths of equivalent length, one of 
which a complete optimal planner is guaranteed to return; 
(2) Optimal paths will never cross themselves, otherwise 
any path loops could simply be eliminated to yield a shorter 
path; (3) Optimal paths have a hounded curvature due to 
the Euclidean edge weights (e.g. the minimum angle an 
optimal path on a 2D grid can ever form with itself is 
90 degrees). In the next section, we compare the sizes of 
the neighbor node expansion sets for both traditional and 
optimized grid planning. 

V. ANALYSIS 

We first compare the relative number of node expansions 
for grids of different dimensions. For traditional search 
which uses the full set of neighbors, as illustrated in 
Fig. ](a) and Fig. 2(a). For a grid of dimension d ,  the 
total number of neighbors of a point p (i.e. the complete 
set N,) is given hy 3d - 1 .  The sizes of the sets partitioned 
according to the number of component values that differ 
from p can be expressed as a recurrence relation. Let 
Npd(k) be the set of all neighbors with k component values 
that differ from p on a grid of dimension d.  The size of 
this set can be defined recursively as: 

l lq-r l l  5 l l ~ - P l l + l l P - ~ l l ~  

( 1  : k = O ,  l < i < d  

d 

This recurrence reduces to the simple closed form expres- 
sion: 

(1) 
d! INl(k)l = 2'- ( d  - k ) !  

Table I shows the computed set sue  values for grids of 
different dimensions, We verify that the sum of all of the 
partition set sizes for a grid dimension d matches the total 
number of neighbor nodes: 

id .:. ... ... ... 3 d  - 1 

rl 

INp(d)l = c / N i ( k ) I  = 3' -1  
k = l  

TABLE I 
TOTAL NODE EXPANSIONS FOR TRADITIONAL SEARCH 

6 12 8 
24 32 16 I 9 1 PO 40 RO RO 32 

I IO  I 20 180 960 3360 8064 I 59048 

We now derive the size of the optimized set of neighbor 
nodes IMp,pl. which omits neighboring nodes of the grid 
point p that can be safely excluded from the node expansion 
step depending u p n  the relative direction of the parent 
point q. Recall that when a node is expanded, its parent 
point q along with all of the the mutual neighbors of q can 
be excluded 

The size of the set Mp,q is dependent upon which neighbor 
partition set of p that q belongs to. As the number of 
differing grid component values between points p and 
q decreases, there will he a larger overlap in their full 
neighbor sets Np and Nq. This results in a correspondingly 
smaller size for the reduced neighbor set Let O,d(k) be the 
reduced set of all neighbors with k component values that 
differ from p on a grid of dimension d. The size of this set 
can be defined recursively: 

This recurrence also has a simple closed form solution: 

(O$(k)( = INp(d)l - (2k3d-k - 1 )  
= 3 d - z k 3 d - k  

Table Ll shows the computed total reduced set size values 
for grids of different dimensions, and for different 

parent point q classifications. The rightmost column shows 
a calculated weighted average of the total expected number 
of neighbor expansions for a grid of d dimensions. These 
data show that the largest pefiormance savings ~ c c u r  for 
smaller values of i and k. 

VI. RESULTS 
We now describe some experimental results. A simple 

test program to evaluate the performance advantages when 
using the reduced neighbor set for path planning on multi- 
dimensional grids was implemented. Table III shows the 
computed relative frequencies of the different parent p i n t  
q classifications. The data show that from this distribution, 
as the grid dimension d increases, the sizes of the sets of 
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TABLE n TABLE N 
TOTAL REDUCED SET SIZE BASED ON TXECLASSIUCATIOK OF q. PERFORMANCE RATIOS FOR TIIF. REDUCED VS. FULL NElOIlBOR SET. 

10 

3 
4 
5 
6 
7 
8 
9 
10 - 

0.0033 0.W30 0.0163 0.0569 0.1366 

9 
27 
81 

243 
729 
2187 
6561 
19683 

~ 

15 19 
45 57 65 

135  171 195 211 
405 513 585 633 
1215 1539 1755 1899 
3M5 4617 5265 5697 
10935 13851 15795 17091 
32805 41553 47385 51273 

15 
52 
175 
568 
1811 
5683 
17634 
54266 

~ 

TABLE m 
APPROXIMATE PKEQUZNCIES ACCORDING TO q CLASSIF1CATION. 

7 I! 9 

NXl) NP) M 3 )  
0.50W 0.5wO 
0.2308 0.4615 0.3077 
0.toW 0.3WO 0.4oM) 
0.0413 0.1653 0.3306 
0.0165 0.0824 0.2198 
0.0064 0.0384 0.1281 
0 . W  0.0171 0.0683 
0.OW 0 . W 3  0.0341 

0.2m 
0.3306 0.1322 
0.3297 0.2637 
0.2562 0.3074 
0.1707 0.2732 
0.1024 0.2029 

diagonal edges increases at a very rapid rate and ultimately 
form the hulk of the distribution. 

Based on the frequency distribution in Table m, a 
weighted average of the total expected number of neighbor 
expansions for a grid of d dimensions was calculated as a 
performance ratio relative to full-neighbor expansion: 

The computed values are displayed in Table N. For 2D 
and 3D grids, using the reduced neighbor set yields a 50% 
and 43% savings in computation related to node expansion. 
The performance advantage tapers off dramatically as the 
dimension increases, but still manages to maintain a 22% 
advantage for six-dimensional grids, and an approximately 
9% savings for ten-dimensional grids. 

Note that these are the ideal performance ratios, and 
the actual performance gains may be larger or smaller de- 
pending upon a number of interrelated factors. Parameters 
affecting the performance include the dimension and size 
of the grid, the obstacle arrangements relative to the start 
and goal positions, and the efficiency of the implementation 
data structures such as the priority queue used to manage 
node expansion. 

In addition to the basic implementation for testing per- 
formance on grids of higher dimensions, we have also de- 
veloped an interactive navigation path planning application. 
We implemented the optimized 2D grid search described in 

- 
Dim. 

2 
- 

3 
4 
5 
6 
7 
8 

9 
10 
11 
12 - 

0.3462 
0.3375 
0.3347 
0.3338 
0.3335 
0.3334 
0.3334 
0.3333 
0.3333 
0.3333 

~ 

0.5769 
0.5625 
0.5579 
0.5563 
0.5558 
0.5556 
0.5556 
0.5556 
0.5556 
0.5556 - 

0.7308 
0.7125 0.8125 
0.7066 0.8058 
0.7047 0.8036 
0.7040 0.8028 
0.7038 0.8026 
0.7037 0.8025 
0.7037 0.8025 
0.7037 0.8025 
0.7037 0.8025 

TABLE V 

0.8719 
0.8695 
0.8687 
0.8684 
0.8684 
0.8683 
0.8683 
0.8683 

~ 

0.5710 
0.65W 
0.7213 
0.7808 
0.8286 
0.8663 
0.8959 
0.9190 
0.9370 
0.9510 

AVERAGE TOTAL EXECUTION TlME FOR PLANNINO. 

-1 I Mare (50 x 50) 0.4 0.8 
Maze (100 x LOO) 

Office (45 x 45) 

Omce (135 x 135) 7.8 3.3 11.1 
Gfficc (90 x 90) 5.0 

this paper have integrated it into a graphical user interface 
on a standard 1.BGHz desktop PC Nnning Linux. Mer- 
active performance is observed, even for relatively large 
and complex environments. Fig. 5 and Fig. 6 show several 
snapshots of an interactive session involving a humanoid 
figure navigating in both a maze and an office environment. 
The user can dynamically reposition obstacles and the 
goal location as the character moves. The planner rapidly 
computes a new path based on changes in the environment. 

The average projection, search, and total elapsed execu- 
tion times during repeated invocations of the planner during 
an interactive session were tabulated. The timing results are 
summarized in Table V. All values listed in the table are 
in units of milliseconds, and were averaged from N = 100 
independent trials with varying goal locations and obstacle 
positions. Different grid resolutions were tested ranging 
between 45 and 150 cells on a side. The total number of 
triangle primitives in the Maze scene and the Office scene 
were 2,780 and 15,320 respectively. The start and goal 
locations used in these trials were specifically designed to 
force a majority of cells in the grid to be examined. 

VII. SUMMARY AND DISCUSSION 
We have presented a general technique to improve the 

efficiency of finding optimal paths on grids and lattices. 
The key idea is to reduce the number of neighbor-node 
expansions by exploiting the properties of optimal paths as 
they relate to the overall structure of Euclidean-cost grids. 

Despite these improvements, planning methods for com- 
puting optimal paths are generally impractical when deal- 
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Fig. 5. A human figure navighg in a m e  environment. The path is dynamically recomputed m the goal or obstacle Inations change, 

Fig. 6. A human figure navigating in m office en-nment. The left image shows the grid used for planing 

ing with large grids, since the number of cells grows 
exponentially according to the size and dimension of the 
grid. For very large grids and laltices, data structures 
such as quadtrees, octrees, and their higher dimensional 
counterparts may be necesssuy to efficiently manage and 
store the free space. Additional data structures could be 
created to limit the fine-grained path searching to a local 
area. There is a large body of work on finding optimal and 
approximately optimal paths in large networks (for a broad 
overview, see the survey by Mitchell [131). For example, 
maximum distance cutoff values can potentially be used 
to define a local area.: Goals outside the local area'can 
then be mapped to the nearest free border cells in the grid. 
Alternatively, a multi-resolution hierarchical subdivision 
grid structure can potentially be used to first find a come 
path on the meta-grid, and then successively finer-grained 
paths in the sub-grids. Other possibilities include the use 
of intermediate goals defined by a global network of grid 
landmarks known to be connected by free paths. 
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