
Proceedings 01 2004 IEEEIRSJ Internallonal Conference on
Intelligant Robots and Systems
September 28. October 2,2004, Sendai. Japan

Efficient Optimal Search of Uniform-Cost Grids and Lattices

James J. Kuffner

The Robotics Institute
Camegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213, USA
email: kuffner@cs.cmu.edu

Absmrcf-A simple technique is described to speed up opti-
mal path planning on Euctideansost grids and lattices. Many
mhot navigation planning algorithms build approximate grid
representations of the environment and use Djiktra’s algo-
rithm or A* to search the multing embedded graph for an
optimal path between given start and goal locations. However,
the classical implementations of these search algorithms were
designed to h d optimal paths on arbitrary graphs with edges
having arbitrary positive weight values.

This paper explains how to exploit the stmelure of optimal
paths on Euclidean-cost grids and lattices in order to reduce
the number of neighboring nodes considered during a node
expansion step. The mul t is a moderate reduction in the
total nodes examined, which reduces the overall memory
requirements and computational cost of the search. These im-
provements increase the efficiency of optimal mho1 navigation
planning on 2D and 3D grids, and the technique generalizes
to any other search problem that involves h d h g optimal
paths on grids and lattices in higher dimensions whose edge
costs obey the triangle inequality.

I. INTRODUCTION

Classical grid search is a well-known topic in robotics
and artificial intelligence research, and has strong connec-
tions to research in dynamic programming, optimization,
and algorithms for computer networks. Because the storage
and computational costs for grids generally grows expo-
nentially according lo the size and dimension of the grid,
their use has generally been Limited to low dimensional
problems, particularly in robot path planning. However,
grids in higher dimensions have recently been reconsidered
as a deterministic alternative to path planning based on
random sampling [I].

We describe a simple technique to speed up optimal
path planning on Euclidean-cost grids and lattices. This
technique does not improve the fundamental exponential
growth of the cost of grid search, but rather improves the
‘tonstant factor’’ in the running time (see Section V). As
an example, many robot navigation planning algorithms
build approximate grid representations of the environment
and use Djikstra’s algorithm or A* to search the resulting
embedded graph for an optimal path between given start
and goal locations. The classical implementations of these
search algorithms were designed to find optimal paths on
arbitrary graphs with edges having arbitrary positive weight
values. By contrast, embedded graphs on Euclidean-cost
grids have a fixed number of neighboring nodes and known
edge weights. This information can be utilized to improve
the overall performance of a number of computations re-
lated to optimal path planning between grid locations. With

Digital Human Research Center
National Institute of Advanced

Science and Technology (AIST)
2-41-6 Aomi, Koto-ku, Tokyo, Japan 135-0064

:,.. . ,, . ..L i :.LA-
(a) Fun neighbar set (b) N,(l) parent

Fig. 1. Reducing neighbor expansions on 2D grids (a) me full
neighbor set is always used during rraditianrl Dijbm or A’ search
(b) Optimized expansion Of B node whose parent is to the ”West”. (e)
@ W e d expansion of a node with a ”xluthweslem” parent.

minimal overbead, more efficient versions of Dijkslra’s
algorithm or A* search customized for grids can be easily
implemented.

An improved search technique for the special case of
navigation path planning on a 2D grid was originally
presented in (21. This paper generalizes that result and
explains how to exploit the structure of optimal paths
on Euclidean-cost grids and lattices in order to reduce
the number of neighboring nodes considered during a
node expansion step, the key operation in graph search
algorithms. Ttie result is a reduction in the total nodes
that must be examined and ultimately stored in the priority
queue. This produces a moderate to significant reduction
in the overall memory usage and computational cost of the
search depending upon the difficulty of the planning query.

The technique in this paper applies to grids and lattices
with edges between diagonally-adjacent grid points whose
relative costs obey the Viangle inequality. For example,
using the approximate Euclidean distance between grid
points is one such cost assignment. Intuitively, this means
that edges directly connecting two grid point nodes will
always be of lower cost than all alternate paths passing
through intermediate nodes. Experiments conducted on test
examples have shown significantly improved computational
efficiency for robot navigation planning on 2D and 3D
grids, as well as on Euclidean-cost grids and lattices in
higher dimensions. However, the benefit of the optimiza-
tion diminishes as the dimension d increases, and becomes
negligible at around d > 12.

The rest of the paper is organized as follows: Section
gives an overview of related research, Section Ill discusses
issues related to path search on grids, Section N presents
an optimized node expansion technique for grids, Section V
contains analysis, Section VI presents experimental results,

0-780344638104l520.00 GZW IEEE 1946

mailto:kuffner@cs.cmu.edu

(a) Full neighbor set

Fig. 2. Reducing neighbor expansions on 3D @ds

and Section W concludes with a summary discussion.

11. BACKGROUND

The theory and analysis of path planning algorithms
is fairly well-developed in the robotics literature, and is
not discussed in detail here. For a broad background in
motion planning, readers are referred to 131. For any path
planning technique, it is important to minimize the number
of degrees of freedom (DOFs), since the time complexity of
known algorithms grows exponentially with the dimension
of the C-space [41. A complete planning algorithm will
in finite time always find a path if one exists, and report
failure (also in finite time) if no path exists. Complete
algebraic solutions exist for the general path planning prob-
lem [SI, 161, but have yet to be implemented, For problems
in low-dimensional configuration spaces in which the shape
of C-obstacles is known, complete or resolution-complete
methods have been devised, such as exact-cell decomposi-
tion, visibility graphs, or approximate cell-decomposition
(see 131). A popular technique for mobile robot navigation
consists of discretizing the environment into a regular 2D
grid and marking cells which are obstructed by obstacles.
The navigation planning problem can then be cast as a
search problem on the embedded graph defined by the grid.
This is one instance of an approximate cell-decomposition
planning method, and hy adjusting the fineness of the
discretization of the grid, it is possible to devise resolution-
complete planning algorithms.

A. Searching for Shonest Paths on Graphs

The problem of calculating shortest paths on a weighted
graph arises very often in Computer Science. A number
of classical graph search algorithms have been developed.
with two popular ones being Dijkstra's algorithm 171,
and A* search 181. Both algorithms return an optimal

path, and can be considered as special forms of dynamic
programming [91. A* operates essentially the same as
Dijkstra's algorithm except that a heuristic function that
optimistically estimates the cost to the goal is added to the
cost of a node when inserting it into the priority queue. This
causes the algorithm to expand more promising nodes first,
potentially saving a significant amount of computation. For
a discussion of the optimality of A*, see [IO]. Using the
heuristic function alone results in hest-first search (BFS),
which is a greedy algorithm that can sometimes vastly
reduce computation times compared to Dijkstra's algorithm
or A*. However, path optimalily is no longer guaranteed.
Large graphs typically benefit greatly from the use of A* or
BFS along with a reasonable heuristic function. There also
exists a linear time algorithm due to Henzinger, Klein, and
Rao for computing all shortest paths from a single source
in large planar graphs [I 11. However, due to the ovemead
involved in running the algorithm, the potential execution
time savings may only be realized for very large graphs.
Other search strategies of interest cache information for
dynamic or unknown environments in order to avoid having
to search from scratch each time, such as the D* (Dynamic
A*) algorithm [IZ].

111. PLANNING ON GRIDS AND LATTICES

Grids and lattices implicitly define a connected graph,
so path planning between two grid points can be simply
reduced to graph search. However, the classical imple-
mentations of these search algorithms were designed to
find optimal paths on arbitrary graphs with edges having
arbitrary positive weight values. By contrast, embedded
graphs have a fixed number of neighboring nodes. In
addition, edge weights typically consist of known constant
values, such as in thc case of Euclidean-cost grids. This
additional information c,a" he exploited to improve the
efficiency of planning on grids, specifically for cases in
which edges between diagonally-adjacent grid points are
present and whose edge costs obey the triangle inequality.

A. Mathematical Formulation

Although our optimizations are most effective for grids
of two or three dimensions, we will adopt notation that
generalizes to grids (lattices) of arhitrary dimension. Let p
be a point on a grid B of dimension d. Specifically, p is
a vector of size d of integer values which range from the
minimal and maximal extents of the grid along each axis:

P = b i , Q z , . . . , Q d l , Q, E &

Each Ai is the set of all integers on the range
[mini, . . . , m ~ x i] . For simplicity, let us assume that the
range of integer grid component values along each axis
is uniform and given by the set = {l, 2, . . . , N } , i E
{1 ,2 , . . . , d} . Thus, a grid B of dimension d will have N d
distinct grid points p E A1 x dz x . . . x Ad.

Each grid point p has a fixed set of neighboring points.
For the moment, let us ignore the special case of points
on the grid boundary, and focus on interior grid points.
Each interior point p has a set of neighboring points

1947

Fig. 3. Searching an embedded graph dehed by a grid

whose grid coordinates differ only by -1, 0, or +1 for
each component. Let us define the neighbors of p , as
the set Np of all grid points that have all component
values differing only by [- l , O , tl]. Each interior point has
exactly 3* - 1 neighbors distinct from itself. The number
of grid component values that differ from p is one measure
of the “closeness” of that neighbor. At this point, we will
make a special distinction between straight neighbors and
diagonal neighbors. Let us define the straight neighbors
of p as the set Sp c Np of neighboring pints whose grid
cwrdinates differ only hy a single component. There are
exactly 2d straight neighbors for each interior grid point,
namely two for each component axis. All other neighbors
will be referred to as diagonal neighbors, and make up the
set Vp = Np - S,.

More generally, we can partition the set Np according to
the number of component values that differ from p . Those
that differ by a single value form the set Np(l) . which is
just the straight neighbors S,. Similarly, we define the sets
Np(2), Np(3), up to Np(d). These sets are analogous to
the set partitions defined hy the hamming distance measure,
which is used to compare strings of binary digits. Note that
the special case Np(0) is the point p itself, and is usually
implicitly omitted from the set Np.

B. Robot Navigation Planning

In the case of robot navigation planning on a 2D grid,
cells in an occupancy grid are marked as either FREE
or NOT-FREE, depending upon whether or not the cor-
responding location in the environment represents a valid
location for the mbot. Each cell in the grid corresponds
to a node in the embedded graph, and edges are placed
between pairs of neighboring cells that are both FREE.
By searching the graph we can conservatively determine
whether or not a collision-free path exists from the start
location to the goal location at the current grid resolution.
Considering only straight neighhors limits us to searching
motions along the cardinal directions N, S, E, W. ’Ibis
is sometimes referred to .as 4-neighbor search. However,
in order to produce shorter paths, diagonal motions are
usually also considered (8-neighbor search). Fig. 3 shows
a small example of an embedded graph defined by a 2D
grid. By assigning a relative cost to each edge we can
search for a path that connects the start and goal while
minimizing a cost function defined by the edge weights.

C. Assigning Edge Weights
In the case of Euclidean-cost grids, all edge weights

approximate the relative Euclidean distance between adja.
cent grid points. For example, if all edges between straight
neighbors are assigned a relative cost of 1, then edges
between diagonal neighbors on a 2D grid could be assigned
a relative weight of \/z = 1.4. For the 3D case, Np(2) and
N (3) diagonal neighbors are assigned weights of fi and & respectively. F O ~ the general case, edges connecting
a grid point p to all neighboring points q E Np(L) are
assigned a relative weight:

I lp-qllz = VG : 4 E Np(k) , E {I,% . . . , d }

Because these fixed costs obey the triangle inequality, the
node expansion step of traditional graph search algorithms
can be made more efficient.

IV. OPTIMIZING GRID SEARCH

In this section, we show how to speed up path searching
on grids with suaight and diagonal edge weights assigned
as described in the previous section. The hasic idea is
to modify A* and Dijkstra’s algorithm so as to reduce
the overall total number of expected neighboring node
expansions by limiting the number of neighboring cells
inserted into the priority queue. We can do so by exploiting
the geometry of optimal paths on a grid with Euclidean
edge weights.

For example, consider the case of an optimal 8-neighbor
path computed on a 2D grid. The minimum angle an
optimal path on a 2D grid can evcr form with itself is 90
degrees. This fact is apparent by noting that any 8-neighbor
path that forms an angle smaller than 90 degrees can be
made shorter by “cutting comers’’ (see Fig. 4). Because of
this, we can effectively limit the number of neighboring
node expansions by ignoring those cells whose inclusion
would produce a path with an angle less than 90 degrees.
By taking into account which direction a given node was
expanded from, we can reduce the number of potential
future node expansions from 8 to 3 for Np(l) neighbors
and from 8 to 5 for Np(2) neighbors. This is graphically
illustrated in Fig. 1. For example, suppose we extract a
node from the queue that was inserted when its neighbor
node to the “west” was expanded (Fig. l(hjj. Obviously,
there is no need to consider the node to the west when the
current node is expanded. In addition, there is no need
to consider the neighbor nodes to the northwest, north,
southwesr and south. This is because the edges connecting
them to the current node cannot be p m of an optimal path
that includes the edge between the current node and its
western neighbor.

A similar argument can be made for the case of paths
on 3D grids with Euclidean weights. Fig. 2 graphically
illustrates the different cases that arise depending upon the
relative location of the parent node. The parent is the grid
location that corresponds to the neighboring node from
which the current node was originally expanded from. In
general, when a node corresponding to a grid point p is
expanded, its parent point q along with all of the the mutual

1948

neighbors of q can be excluded. To see why, let r be a
mutual neighbor of both p and q. that is: r E Np n Nq.
The edge formed between q and p, and p and r cannot
simultaneously he a member of an optimal path, because
the edge between q and r could be used instead, and will
always be of lower cost due to the aiangle inequality:

There are several other properties of optimal paths on
grids with Euclidean weights that are useful to note: (I)
An optimal path will generally not be unique, as there will
likely he several optimal paths of equivalent length, one of
which a complete optimal planner is guaranteed to return;
(2) Optimal paths will never cross themselves, otherwise
any path loops could simply be eliminated to yield a shorter
path; (3) Optimal paths have a hounded curvature due to
the Euclidean edge weights (e.g. the minimum angle an
optimal path on a 2D grid can ever form with itself is
90 degrees). In the next section, we compare the sizes of
the neighbor node expansion sets for both traditional and
optimized grid planning.

V. ANALYSIS

We first compare the relative number of node expansions
for grids of different dimensions. For traditional search
which uses the full set of neighbors, as illustrated in
Fig.](a) and Fig. 2(a). For a grid of dimension d , the
total number of neighbors of a point p (i.e. the complete
set N,) is given hy 3d - 1 . The sizes of the sets partitioned
according to the number of component values that differ
from p can be expressed as a recurrence relation. Let
Npd(k) be the set of all neighbors with k component values
that differ from p on a grid of dimension d. The size of
this set can be defined recursively as:

l lq-r l l 5 l l ~ - P l l + l l P - ~ l l ~

(1 : k = O , l < i < d

d

This recurrence reduces to the simple closed form expres-
sion:

(1)
d! INl(k)l = 2'- (d - k) !

Table I shows the computed set sue values for grids of
different dimensions, We verify that the sum of all of the
partition set sizes for a grid dimension d matches the total
number of neighbor nodes:

id .:. 3 d - 1

rl

INp(d)l = c / N i (k) I = 3' -1
k = l

TABLE I
TOTAL NODE EXPANSIONS FOR TRADITIONAL SEARCH

6 12 8
24 32 16 I 9 1 PO 40 RO RO 32

I IO I 20 180 960 3360 8064 I 59048

We now derive the size of the optimized set of neighbor
nodes IMp,pl. which omits neighboring nodes of the grid
point p that can be safely excluded from the node expansion
step depending u p n the relative direction of the parent
point q. Recall that when a node is expanded, its parent
point q along with all of the the mutual neighbors of q can
be excluded

The size of the set Mp,q is dependent upon which neighbor
partition set of p that q belongs to. As the number of
differing grid component values between points p and
q decreases, there will he a larger overlap in their full
neighbor sets Np and Nq. This results in a correspondingly
smaller size for the reduced neighbor set Let O,d(k) be the
reduced set of all neighbors with k component values that
differ from p on a grid of dimension d. The size of this set
can be defined recursively:

This recurrence also has a simple closed form solution:

(O$(k)(= INp(d)l - (2k3d-k - 1)
= 3 d - z k 3 d - k

Table Ll shows the computed total reduced set size values
for grids of different dimensions, and for different

parent point q classifications. The rightmost column shows
a calculated weighted average of the total expected number
of neighbor expansions for a grid of d dimensions. These
data show that the largest pefiormance savings ~ c c u r for
smaller values of i and k.

VI. RESULTS
We now describe some experimental results. A simple

test program to evaluate the performance advantages when
using the reduced neighbor set for path planning on multi-
dimensional grids was implemented. Table III shows the
computed relative frequencies of the different parent p i n t
q classifications. The data show that from this distribution,
as the grid dimension d increases, the sizes of the sets of

1949

TABLE n TABLE N
TOTAL REDUCED SET SIZE BASED ON TXECLASSIUCATIOK OF q. PERFORMANCE RATIOS FOR TIIF. REDUCED VS. FULL NElOIlBOR SET.

10

3
4
5
6
7
8
9
10 -

0.0033 0.W30 0.0163 0.0569 0.1366

9
27
81

243
729
2187
6561
19683

~

15 19
45 57 65

135 171 195 211
405 513 585 633
1215 1539 1755 1899
3M5 4617 5265 5697
10935 13851 15795 17091
32805 41553 47385 51273

15
52
175
568
1811
5683
17634
54266

~

TABLE m
APPROXIMATE PKEQUZNCIES ACCORDING TO q CLASSIF1CATION.

7 I! 9

NXl) NP) M 3)
0.50W 0.5wO
0.2308 0.4615 0.3077
0.toW 0.3WO 0.4oM)
0.0413 0.1653 0.3306
0.0165 0.0824 0.2198
0.0064 0.0384 0.1281
0 . W 0.0171 0.0683
0.OW 0 . W 3 0.0341

0.2m
0.3306 0.1322
0.3297 0.2637
0.2562 0.3074
0.1707 0.2732
0.1024 0.2029

diagonal edges increases at a very rapid rate and ultimately
form the hulk of the distribution.

Based on the frequency distribution in Table m, a
weighted average of the total expected number of neighbor
expansions for a grid of d dimensions was calculated as a
performance ratio relative to full-neighbor expansion:

The computed values are displayed in Table N. For 2D
and 3D grids, using the reduced neighbor set yields a 50%
and 43% savings in computation related to node expansion.
The performance advantage tapers off dramatically as the
dimension increases, but still manages to maintain a 22%
advantage for six-dimensional grids, and an approximately
9% savings for ten-dimensional grids.

Note that these are the ideal performance ratios, and
the actual performance gains may be larger or smaller de-
pending upon a number of interrelated factors. Parameters
affecting the performance include the dimension and size
of the grid, the obstacle arrangements relative to the start
and goal positions, and the efficiency of the implementation
data structures such as the priority queue used to manage
node expansion.

In addition to the basic implementation for testing per-
formance on grids of higher dimensions, we have also de-
veloped an interactive navigation path planning application.
We implemented the optimized 2D grid search described in

-
Dim.

2
-

3
4
5
6
7
8

9
10
11
12 -

0.3462
0.3375
0.3347
0.3338
0.3335
0.3334
0.3334
0.3333
0.3333
0.3333

~

0.5769
0.5625
0.5579
0.5563
0.5558
0.5556
0.5556
0.5556
0.5556
0.5556 -

0.7308
0.7125 0.8125
0.7066 0.8058
0.7047 0.8036
0.7040 0.8028
0.7038 0.8026
0.7037 0.8025
0.7037 0.8025
0.7037 0.8025
0.7037 0.8025

TABLE V

0.8719
0.8695
0.8687
0.8684
0.8684
0.8683
0.8683
0.8683

~

0.5710
0.65W
0.7213
0.7808
0.8286
0.8663
0.8959
0.9190
0.9370
0.9510

AVERAGE TOTAL EXECUTION TlME FOR PLANNINO.

-1 I Mare (50 x 50) 0.4 0.8
Maze (100 x LOO)

Office (45 x 45)

Omce (135 x 135) 7.8 3.3 11.1
Gfficc (90 x 90) 5.0

this paper have integrated it into a graphical user interface
on a standard 1.BGHz desktop PC Nnning Linux. Mer-
active performance is observed, even for relatively large
and complex environments. Fig. 5 and Fig. 6 show several
snapshots of an interactive session involving a humanoid
figure navigating in both a maze and an office environment.
The user can dynamically reposition obstacles and the
goal location as the character moves. The planner rapidly
computes a new path based on changes in the environment.

The average projection, search, and total elapsed execu-
tion times during repeated invocations of the planner during
an interactive session were tabulated. The timing results are
summarized in Table V. All values listed in the table are
in units of milliseconds, and were averaged from N = 100
independent trials with varying goal locations and obstacle
positions. Different grid resolutions were tested ranging
between 45 and 150 cells on a side. The total number of
triangle primitives in the Maze scene and the Office scene
were 2,780 and 15,320 respectively. The start and goal
locations used in these trials were specifically designed to
force a majority of cells in the grid to be examined.

VII. SUMMARY AND DISCUSSION
We have presented a general technique to improve the

efficiency of finding optimal paths on grids and lattices.
The key idea is to reduce the number of neighbor-node
expansions by exploiting the properties of optimal paths as
they relate to the overall structure of Euclidean-cost grids.

Despite these improvements, planning methods for com-
puting optimal paths are generally impractical when deal-

1950

.. . . .

Fig. 5. A human figure navighg in a m e environment. The path is dynamically recomputed m the goal or obstacle Inations change,

Fig. 6. A human figure navigating in m office en-nment. The left image shows the grid used for planing

ing with large grids, since the number of cells grows
exponentially according to the size and dimension of the
grid. For very large grids and laltices, data structures
such as quadtrees, octrees, and their higher dimensional
counterparts may be necesssuy to efficiently manage and
store the free space. Additional data structures could be
created to limit the fine-grained path searching to a local
area. There is a large body of work on finding optimal and
approximately optimal paths in large networks (for a broad
overview, see the survey by Mitchell [131). For example,
maximum distance cutoff values can potentially be used
to define a local area.: Goals outside the local area'can
then be mapped to the nearest free border cells in the grid.
Alternatively, a multi-resolution hierarchical subdivision
grid structure can potentially be used to first find a come
path on the meta-grid, and then successively finer-grained
paths in the sub-grids. Other possibilities include the use
of intermediate goals defined by a global network of grid
landmarks known to be connected by free paths.

ACKNOWLEDGMENTS

I thank the anonymous reviewers for their helpful sugges-
tions. 'Ibis research was partially supponed by NSF grants
ECS-0325383, ECS-0326095, and ANI-0224419.

REFERENCES
[l] S. M. LsValle and M. S. Branicb, '"On the relationship between

clsssicd grid search and probabilistic mdmaps:' in Pmc. Workshop
on the Algorilhmic Foundations of Robolics, Dec. 2002.

121 I. Kuffner, "Autonomous agents for real-time animation:' Ph.D.
dirmtation, Stanford Uniwrsiry. Stanford, CA, Dec. 1999.

131 1. C. Latomhe. Robot Morion P h n i n g . Bostoq MA: Kluwer
Academic Publishers, 1991.

141 1. H. Reif. "Complexity of the mover's pmblem and genera"-
tions:' in P m . 201h IEEE S y q . on Foundorions of Computer
Science (FOCS). 1979, pp. 421427.

[51 1. T. S c h W m and M. Sharir. 'yln the 'piano movers' problem:
U. general techniques for computing topological pmpedes of real
algebraic manifolds:' Advances in applied Mathematics. vol. 4, pp.
298-351, 1983.

161 I. Cannv. Ihc Comolezio of Robol Motion P l m i n a . Cambtidze,
M A Res, 1988.

[71 E. W. mjbtra, "A note on two pmblem in comexion with gaphs,"

"01. IO, no. 3, 1995.
[I31 1. Mitchell, Hondbook of Compularionol Geomlry. Elswier Sci-

ence. 1998, ch. Geomctdc Shorvst Paths and Network Optimization.

1951

