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Abstract— This paper describes a unique approach of applying
a pattern classification technique to robot path planning. A
collision-free path connecting a start and a goal point provides
information on the division of the space. In the case of 2D path
planning, for example, the path divides the space into two regions.
This suggests a dual problem of first dividing the whole space
into such two regions and then picking up the boundary as a
path. We develop a method of solving this dual problem using
support vector machine (SVM). SVM generates a non-linear
separating surface based on the margin maximization principle.
This property is suitable for the purpose of usual path planning
problems, that is, generating a safe and smooth path. The details
of the path planning methods in 2D and 3D spaces are described
with several planning results. Future possibilities of combining
the proposed concept with other path planning methodologies
are also discussed.

I. INTRODUCTION

Path planning has been one of the important problems in
robotics for long years [10]. Path planning is usually regarded
as finding a continuous collision-free path, given a start point,
a goal point (or a goal region), and obstacles in the space. In
earlier works, a path is calculated by searching a graph (e.g.,
visibility graph [11]) or a grid of free spaces. Construction of
free space maps in configuration space and that of search space
is, however, sometimes costly especially for path planning
in high-dimensional spaces. In recent years, the randomized
approaches [7], [1], [5], [4] appear successful in many practical
applications which require high-dimensional motion planning.
All these works are search-based. Another line of research is
potential-based [8], [9], which are more suitable for real-time
path planning domains.

Previous works on path planning basically take an approach
that a path is constructed from a set of primitive path elements
(i.e., a set of unit motions or possible transitions between
grid cells). This paper looks at path planning from a different
viewpoint. Let us consider a point robot moving among planar
obstacles. A collision-free path, connecting a start and a goal
point, divides the whole space into two regions: one on the
left and the other on the right of the path. This suggests a dual
problem of first dividing the whole space into such two regions
and then picking up the boundary as a path. In more than two
dimensional spaces, although a path is not the boundary of two
regions, a boundary surface, once obtained, would suggest a
possible collision-free path.

Division of the whole space into two regions can be viewed
as a two-class classification problem. In the field of pattern
recognition, a variety of classification methods have been
proposed. Among them, we try to use support vector machine

(SVM) [14], [3] as a classifier. SVM is one of the powerful
classifiers and has been successfully applied to many object
recognition tasks such as 3D object recognition [13], face
recognition [12], and pattern matching-based tracking [2].

SVM has the following properties that are useful for being
used in path planning:

• SVM can generate non-linear separating surfaces, which
are suitable for generating smooth paths.

• The idea of margin maximization is suitable for the
strategy of seeking safety (keeping away from obstacles)
in path planning.

• SVM can calculate optimal separating surfaces with a
relatively low cost, in comparison with combinatorial
approaches.

This paper describes our support vector mechine-based path
planner (called SVPP).

II. SUPPORT VECTOR MACHINE

A. Margin maximization

Support vector machine (SVM) is a binary classification
method that finds the optimal separating hyperplane based on
the concept of margin maximization [14], [3].

Let (x1, t1), . . . , (xN , tN ), xi ∈ Rm, ti ∈ {−1, +1} be the
training samples separated by a hyperplane wT x − h = 0. If
the training data are linearly separable, there exist parameters
w and h that satisfy:

ti(wT xi − h) ≥ 1, (i = 1, . . . , N). (1)

Using such parameters, the two classes are separated by two
hyperplanes, H1 : wT x − h = 1 and H2 : wT x − h = −1,
and no data exist between the hyperplanes. Since the distance
between the hyperplanes is 2

||w|| , the optimal parameters are
determined by minimizing the objective function:

L(w) = ||w||2/2 (2)

under the constraint represented by eq. (1).
A solution to this problem is given by solving the following

dual problem that is to maximize:

LD(α) =
N∑

i=1

αi − 1
2

N∑

i,j=1

αiαjtitjx
T
i xj (3)

under the constraints:
N∑

i=1

αiti = 0, αi ≥ 0 (i = 1, . . . , N). (4)
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The training data xi with non-zero αi are on either one of
the hyperplanes wT x − h = 1 or wT x − h = −1; such data
are called support vectors because they are the only data that
determine the parameters. From these data, a discrimination
function is given by

y = sign(wT x − h) = sign(
∑

i∈S
αitix

T
i x − h ), (5)

where S indicates the set of indices for support vectors.

B. Soft margin

In linearly separable cases, all samples are outside of the
region formed by two hyperplanes, H1 and H2. If sample data
are not linearly separable, we allow some samples to move into
the opposite side over one of the hyperplanes. Instead of eq.
(2), we use the following objective function:

L(w) =
1
2
||w||2 + γ

N∑

i=1

ξi, (6)

where ξi ≥ 0 is called a slack variable indicating how much
each sample moves into the opposite side, and γ is a weight
balancing the margin maximization and the error reduction.
The solution to this minimization problem can also be obtained
by solving its dual problem, similarly to the linearly separable
case.

Non-zero αi corresponds to the following two cases: for
support vectors on either of two hyperplanes, H1 and H2, the
inequality 0 < αi < γ holds; for support vectors inside the
hyperplanes, αi = γ.

C. Non-linear SVM using kernel tricks

SVMs can be used to determine non-linear separating sur-
faces using kernel tricks [14], [3]. By using some appropriate
kernel function, which calculates inner products in a high-
dimensional space, we can change the problem of finding a
non-linear separating surface in the original space into that of
finding a separating hyperplane in the high-dimensional space,
thus reducing the calculation cost and making it possible to
obtain an optimal non-linear separating surface in the original
space.

Let π be the mapping from the original to the high-
dimensional space. Such a mapping exist for some class of
kernel function K , that is:

π(x1)T π(x2) = K(x1, x2). (7)

For the discrimination in the high-dimensional space, the
original objective function (eq. (3)) is modified as

LD(α) =
N∑

i=1

αi − 1
2

N∑

i,j=1

αiαjtitjK(xi, xj), (8)

and the discrimination function (eq. (5)) is modified as

y = sign(
∑

i∈S
αitiK(xi, x) − h ). (9)

Since all necessary calculations in the high-dimensional space
is given by the calculation of the kernel function in the original

Fig. 1. An example of obtaining non-linear separating surfaces.

Small box marks and × marks indicate positive and negative
samples, respectively. Bright, medium, and dark regions
indicate positive, intermediate, and negative regions, respec-
tively. Samples with larger boxes are support vectors.

space, we can determine non-linear separating surfaces without
explicitly representing the high-dimensional space. Fig. 1
shows an example of non-linear classification.

III. SVM-BASED PATH PLANNING: 2D CASE

A. Pre- and post-processing for applying SVM to path plan-
ning

We first investigate what processes should be performed for
applying SVM to path planning problems. Let V be the output
of the following expression (this is actually the argument of
the sign function in eq. (9)):

V =
∑

i∈S
αitiK(xi, x) − h. (10)

Based on the value of V , the whole space is divided into the
following three regions (see Fig. 1):

• Positive region where V ≥ 1.
• Negative region where V ≤ −1.
• Intermediate region where −1 < V < 1.

If we can generate these regions so that all obstacles are
in positive or negative regions, a collision-free path can be
found inside intermediate regions. For this purpose, we divide
obstacles into two classes, and positive samples for support
vector learning are generated from one class and negative
samples from the other. We also set virtual obstacles around a
start and a goal point so that they lie in intermediate regions.

In general, however, even if both a start and a goal point
lie inside intermediate regions, it may not be the case where
the two points are in the same intermediate region, because
intermediate regions may be divided into several parts as
shown in Fig. 1. Such a case happens mainly because enough
constraints for dividing the space as expected are not provided
due to the scarceness of samples in several places between the
start and the goal point. To cope with this, we add several data
as guide samples.

Once an intermediate region is obtained which contains both
a start and a goal point, the next step is to generate an actual
path. This is basically done by following the separating surface
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goal
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     and generate samples
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Fig. 2. Steps for SVM-based path planning.

on which the output of SVM is zero. This surface following
step can also be used for verifying if a start and a goal point
can be connected with each other.

B. 2D SVPP algorithm

1) Outline of the algorithm: All obstacles should be labeled
as positive or negative before applying SVM. One way is to
test all possible patterns of labels and choose the best one
which provides the shortest path. This is, however, evidently
intractable when the number of obstacles is large. We therefore
take a randomized approach in which a limited number of
obstacle (labeling) patterns are randomly selected and tested.
For each selected pattern, we generate positive and negative
samples and feed them to SVM to calculate a separating
surface.

The outline of the algorithm is as follows:
a) Set virtual obstacles around the start and the goal point.
b) Make the initial obstacle pattern and generate positive

and negative samples accordingly.
c) Set guide samples to wrap the possible traversed region.
d) Apply SVM to the generated samples and extract a

feasible path by analyzing the learned model.
e) Try other patterns until the termination condition is

satisfied.
We will explain each step in detail using Fig. 2.

2) Setting virtual obstacles around start and goal point:
We set virtual obstacles around the start and the goal point
so that the intermediate region includes these points (see Fig.
2(b)). More concretely, we calculate the line connecting the
points (called the nominal line) and put Nv positive (on the

ds

θs

next point

separating line

Fig. 3. Search for the next point on the separating surface.

right side) and Nv negative ones (on the left) at a certain
distance (dv) from and in parallel to the nominal line.

3) Initial obstacle pattern and sample generation: The
initial obstacle pattern is determined as follows. If the centroid
of an obstacle is on the right (left) side of the nominal line, the
obstacle is labeled as positive (negative). From each obstacle,
we generate samples at vertices and at midpoints of edges.
Fig. 2(c) shows the initial pattern and the generated samples.

4) Setting guide samples: Guide samples are arranged in
parallel with the nominal line, with a predetermined distance
(dg) from the line and with a certain spacing (dp) between
samples. Samples connected by solid lines in Fig. 2(d)(f) are
guide samples. If an obstacle moves into the opposite side,
the guide samples on that side near the obstacle are shifted
according to how much the obstacle moves in (see negative
(black) guide samples in Fig. 2(f), for example).

5) Applying SVM and analyzing the learning result: We
then apply an SVM learning algorithm to the generated sam-
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L = 55 L = 64 L = 69 L = 71

L = 56 L = 60 L = 66 L = 64

Fig. 4. 2D path planning results.

Large squares indicate obstacles, small box marks indicate positive samples, and × marks indicate negative samples.
Marks surrounded by larger squares indicate support vectors. The whole region is divided into three types of regions:
the lightest-colored regions indicate “positive”, the darkest-colored indicate “negative”, and the others indicate
“intermediate” that include separating surfaces. The yellow continuous line indicates the planned path. The total
path length differs according to the obstacle pattern, and the shortest one is selected as the final planned path.

ples. By this learning, we get a set of support vectors and their
weights; they constitute a discrimination function to determine
to which region (positive, negative, and intermediate) each
point belong.

The separating surface, which is the separating line in 2D,
represents candidates of collision-free paths. The surface is
not, however, explicitly represented by the model (i.e., support
vectors and weights). We therefore determine the separating
line by repeatedly searching for the next point where value V
in eq. (10) is zero, on the line with a fixed step (see Fig. 3).
The step length ds and the search angle range θs are adjusted
according to the space size.

By this search, we expect to get a path from the start to the
goal point (see Fig. 2(e)). For some obstacle patterns, however,
the two points may belong to different “intermediate” regions
with each other. So we terminate the above search when the
number of steps exceeds a threshold. We also terminate the
search when the safe next point, where |V | < 1.0, is not
found in the one-step search shown in Fig. 3; this case occurs
when, for example, the distance to the obstacles on the both
side of the path is very small.

6) Trying other patterns: We try to generate paths for
several other patterns. We randomly select one obstacle and
flip it (from positive to negative or vice versa) to make another
pattern. If this pattern is new, we generate samples accordingly
and apply the above steps to generate another path. We repeat
the path generation process until the number of patterns tried
exceeds a predetermined number (Np) and at least one feasible

path is found (See Fig. 2(h)).

C. Experimental Results

This subsection describes experimental results. Obstacles of
the same size are randomly placed within a square workspace.
A set of obstacles that overlap with each other is considered
to be a single obstacle. We currently use a publicly-available
SVM software, SVMlight [6]. The kernel function used is a
Gaussian kernel.

Fig. 4 shows a set of planned paths for a path planning
problem. In this problem, the size of the square workspace is
2.02, the start and the goal point are at (0.1, 0.1) and (1.9, 1.9),
respectively; obstacle size is 0.22 and the number of obstacles
is initially twenty but merged into seven, by considering the
overlaps of obstacles. The figure shows the planning results for
eight obstacle patterns. Although different patterns generate
different paths, a smooth path is generated in all cases. The
selected shortest path is the one of the left- and upper-most
pattern.

In this simulation, we use the following parameters; the
size of Gaussian kernel is 10; the weight for the soft margin
is 1000.0; the number Nv of samples for each virtual obstacle
is 3; the distance dv of the samples to the nominal line is 0.05.
Concerning guide samples, the distance dg to the nominal line
is 0.2, the spacing dp between samples is 0.1. The minimum
number Np of the trial on various obstacle patterns is 20. The
search angle range θs is 120 [deg] and the step length ds is
0.05 (see Fig. 3).
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We examined the calculation time for 10 planning problems
with 20 obstacles. The averaged time for applying SVM for
one obstacle pattern is about 114.4 [ms] with standard devia-
tion σ=82.7 [ms], but that for the patterns for which paths were
found is about 80.1 [ms] with σ=31.6 [ms]; discrimination is
easier for such patterns and thus takes less time and less
uncertainty for applying SVM. The averaged time for path
generation for such patterns is about 61 [ms] with σ=9.8 [ms].
The total planning time depends on the minimum number of
trials, Np; for Np = 20, the averaged total planning time is
about 10.0 [s] with σ = 2.69 [s].

IV. SVM-BASED PATH PLANNING: 3D CASE

A. Determining nominal plane

In the 2D case, the line connecting a start and a goal point
(nominal line) divides the whole space into the regions. This
property is used for setting virtual obstacles, determining an
initial obstacle pattern, and setting guide samples. In the 3D
case, however, the line does not have such a property. So we
add one more dimension in the direction having the largest
diversity of obstacle positions. This direction is determined
by applying PCA (principal component analysis) to the set
of obstacle vertices; i.e., determined as the direction of the
eigenvector with the largest eigenvalue.

We consider the plane which includes the nominal line and
whose normal is the eigenvector mentioned-above. Using this
plane, we divide the whole 3D space into two regions. We call
this plane the nominal plane.

B. 3D SVPP algorithm

1) Setting virtual obstacles around start and goal point:
We set two planes on both sides of the nominal plane around
the start point or the goal point, and generate virtual obstacles
(and thus samples) on these planes. Samples on one side are
positive and those on the other are negative.

2) Initial obstacle pattern and sample generation: The
obstacles are divided into positive and negative classes based
on the position of centroid with respect to the nominal plane,
and the obstacles in the positive (negative) class are labeled as
positive (negative). Samples are generated at not only vertices
of obstacles but also their edges and faces.

3) Setting guide samples: We set a pair of planes parallel to
and on both sides of the nominal plane, at the same distance.
Samples are generated on these planes to cover an enough area
of the planes. If an obstacle moves into the opposite side, the
guide samples on that side near the obstacle are shifted along
the direction of the normal of the nominal plane, according to
how much the obstacle moves in.

4) Applying SVM and analyzing the learning result: We
apply the same SVM learning algorithm to all generated
samples and obtain a set of support vectors and their weights.
As in the 2D case, we search for a path using these data.
The search strategy is, however, more complex in the 3D case
because we have to determine not only the separating surface
but also the moving direction on that surface.

pitch angle
φ

ϕ

roll angle

separating surface

fitted plane

Fig. 5. Local plane approximation of the separating surface.

To search for a path, we first fit a plane to the separating
surface within a nearby region of the robot. This fitted plane
is determined by searching the space of the pitch and the roll
angles for the best plane which minimizes the sum of the
distances between the plane and the surface (see Fig. 5). Once
this plane is determined, we project the nominal line onto the
plane and select a point on the projected line.

C. Experimental results

Fig. 6 shows a result of 3D path planning. The size of the
cubic workspace is 2.03, the start and the goal point are at
(0.1, 0.1, 0.1) and (1.9, 1.9, 1.9), respectively; the number of
obstacles, whose size is 0.263, is initially twenty and merged
into twelve. We examined the calculation time for 4 planning
problems with 10 obstacles; the minimum number of trials
Np is set to 10. The averaged time for applying SVM for
one obstacle pattern is about 175.8 [ms] with σ=65.0 [ms],
but that for the patterns for which paths were found (i.e.,
easier patterns) is about 147.6 [ms] with σ=39.7 [ms]. The
averaged time for path generation for such patterns is about
3.3 [s] with σ=0.28 [s]. The averaged total planning time is
about 1 [min] 20 [sec] with σ = 10.0 [sec]; most of planning
time is spent for the path generation step.

V. COMBINATION OF SVPP WITH OTHER

METHODOLOGIES

The current SVPP algorithms are not efficient enough to be
used alone. This section therefore seeks several possibilities
of combining the SVPP concept with other path planning
methodologies.

A. Generating a Smooth Path

Search-based path planning methods usually generate a
piecewise linear path. In controlling a robot, a smooth path is
preferable for safety and stability. SVM, which can generate
non-linear separating surface, can thus contribute to generating
a smooth path. Given a piecewise linear path, classification of
obstacles into positive or negative is easily performed. For an
feasible classification pattern, it takes a relatively small cost
to calculate a separating surface and generate a smooth path,
as previously shown.
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goal point

start point

positive obstacle

negative obstacle

positive sample

negative sample

positive support vector
negative support vector

planned path

Fig. 6. A planning result in 3D.

Blue means positive and red means negative. Large cubes are obstacles, (very) small cubes are samples, and small
spheres are support vectors. The yellow line indicates the planned path.

B. Using the Discrimination Function as a Potential

Path generation from a start point to a goal point is currently
done by a search-based method and is costly. Since the method
basically follows a separating surface (or a line in 2D) and
the distance to the surface is evaluated by the discrimination
function (more specifically, the absolute value of V in eq.
(10)), |V | (or a monotonic function of |V |) can be used as a
potential function; a lower potential means more distant from
obstacles. We could design a potential function combining
the potential |V | and those defined by the position of the
destination.

C. Using Support Vectors as Graph Nodes

Support vectors used for determining a separating surface
also carry important information for planning a safe path.
Even if a generated set of support vectors is not sufficient
for generating a feasible path due to an inappropriate obstacle
classification, some of the vectors may carry useful informa-
tion for generating a part of a feasible path. Therefore, support
vectors generated by applying SVM to several classifications
can be, for example, candidates for the nodes in a visibility
graph-based path planner; such a preprocessing using SVM
may be able to reduce the total planning cost.

VI. CONCLUSIONS

This paper has described a unique approach of applying
SVM to robot path planning. SVM has a nice property that
it can generate a continuous non-linear separating surface
between labeled data samples. We have described the pre-
and post-processing for using this property in robot path
planning in 2D and 3D. Applications to higher-dimensional
path planning and reduction of planning cost are future works.
We have also discussed future possibilities of combining SVPP
concept with other path planning methodologies.
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