

Manipulation and Fluid Power

October 07, 2008

www.robojackets.org

Manipulation

RoboJackets

Keys to Understanding Manipulators

- · What is a manipulator?
- What kinds of manipulators are there?
- What are the different types of joints and linkages in a robotic arm?
- How can joints and linkages control an arm's motion (geometrically)?
- What kind of manipulation is a roller / conveyor system good for?
- How can a several manipulator concepts be combined?

What is a Manipulator?

- A mechanism that interacts directly with an object (or objects) of interest.
- Can take many forms
 - Dexterous arms
 - Roller/ conveyor systems
 - Combinations

RoboJackets

Types of manipulators

- · Dexterous arms
 - Serial
 - Parallel
- Roller / Conveyor systems
 - Single path
 - Mass flow
- Combinations

RoboJackets

Manipulation – Arms

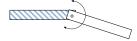
Dexterous Arms - Terms

- Dexterous
- Able to move to several positions and orientations
- · Serial Manipulator
 - Arm formed by a single chain of linkages
- · Parallel Manipulator
 - Formed by multiple linkage chains
- Rotation
 - Change in an objects orientation (angle)
- Translation
 - Change in an objects position
- · Degrees of Freedom
 - Number of ways in which the arm can move.

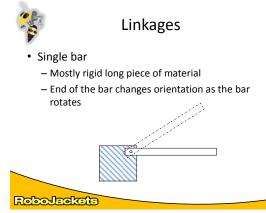
Robo-Jackets

Dexterous Arms – Components

- Linkages
 - Rigid or flexible lengths of material
- Joints
 - Connection points between linkages can allow for rotation (rotary joints) or translation (sliding / prismatic joints)
- End Effector
 - Mechanism at the end of an arm that directly contacts the object of interest



RoboJackets

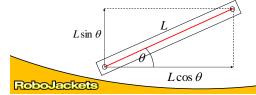

Joints

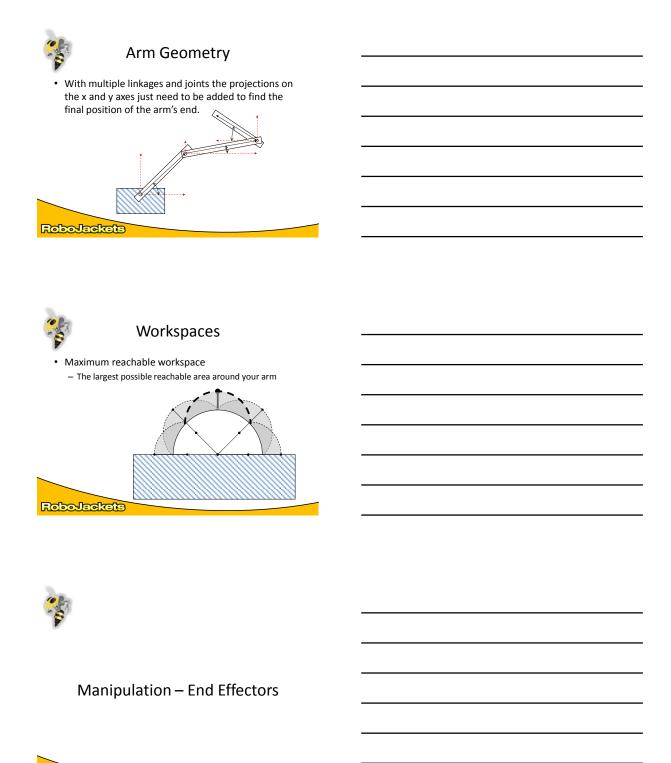
- Joints allow for controlled motion of one linkage relative to another
- Rotary or hinge joints allow rotation around a pivot

• Prismatic or sliding joints allow translation along one axis

Linkages

- Parallel bar
 - A parallelogram created using single bars and hinge joints
 - Can move along an arc without changing orientation of one set of bars




RoboJackets

Arm Geometry

- Trigonometry
 - By using arm angles and linkage lengths, the position of the end can be found.
 - This can be simplified using projections of the linkages onto the x and y axes.

End Effectors

- End effectors are at the end of a robot arm and interact with the objects being manipulated.
 - Passive
 - · Hooks and adhesive end effectors that do not have a powered grip
 - Active
 - · Grippers, suction cups and other powered grasping deviced

Robo-Jackets

End Effectors

- · Active grippers
 - More complex, but end up being more reliable in cases where the robot is moving with an object.
 - Geometry must match the object(s) being grasped
 - Note: Consider objects deformation properties.

RoboJackets

Rollers/Conveyors

- Good at moving large amounts of similar objects quickly.
- Past FIRST and FTC scoring objects that have been scored with conveyors or rollers.
 - Storage bins
 - Foam balls
 - Rubber balls
 - Softballs

Types of Rollers

- Rigid rollers are generally good at picking up uniformly-sized, deformable objects
 - Foam balls
 - Inflatable balls
- Soft or deformable rollers are generally better at picking up harder or variable sized objects
 - Softballs

RoboJackets

Enclosed Conveyor Systems

- Single belt
 - Rolls the object against a stationary surface

- Double belt
- Translates the object between two conveyor belts
- Object moves twice as fast as in a single belt system with the same belt speed

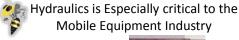
RoboJackets

Enclosed Conveyor Systems

- · Smooth belt
 - Belt provides more contact area with object
 - Has the ability to slide if there is a buildup of objects
- Profiled
 - Belt does not rely on friction but uses the geometry of the object to provide support
 - Used to stack boxes in 2003 FRC

What is Fluid Power?

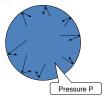
- · Pressurized fluid does the work
- Hydraulics
 - Oil
 - Water
 - Other fluids
- Pneumatics
 - Air
 - Nitrogen
 - Hot gases
- Other gases


Robo-Jackets

When to use fluid power

- Electric
 - High speed but low torque (force) → requires gears
- Control is often more precise and rapid and less expensive
- Hydraulic and pneumatic
 - Speed/torque combo is well suited to many motion applications
 - Well suited to high forces
 - Can be delivered "around the corner"
 - Control is usually by throttling, hence wastes energy
- Center for Compact Efficient Fluid Power
 - A brazen commercial

Robo-Jackets


Pneumatics compared to hydraulics

- No problems of a spills
- · Compressibility stores energy
 - Available for your use
 - Dangerous if excessive volumes or pressures
- · Difficult to control precisely
- · Fluid is readily available
- Should be filtered, dry
- Usually lower forces

Pressure of an "ideal" Gas

 $P \times V = mR \times T$

- Pressure of a gas is due to the force of gas molecules bouncing off the walls.
- Pressure increases when molecules are moving faster, heavier, or if there are more molecules.
- · Molecules move faster when they are hot.
- mR depends on molecule.

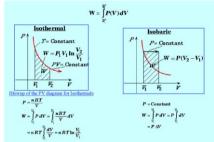
Getting Work out of Air

- Work is force acting over a distance of motion, e.g. Newton x meters
- Put air in a container under pressure
- Allow part of the container to expand
- The expanding part does work

Robo-Jackets

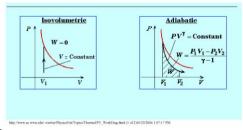
How much energy is in your tank?

- Tank Volume = 150 ml or 9.154 in³
- Pressure = 413,700 Pa or 60 psi
- Atmospheric pressure = 101,325 Pa or 14.7 psi
- · Answer:
 - Assume constant temperature:


PV = mRT = constant

- Work = PV In(P/P_{atm}) = 0.15 x 413,700 x In(4.083) = 87.3 kJ

RoboJackets

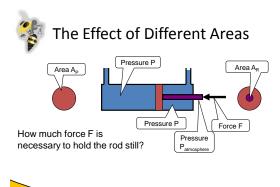


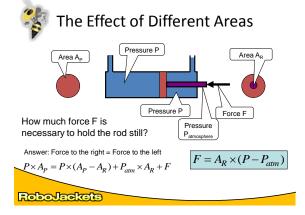
Alternative Work Possibilities

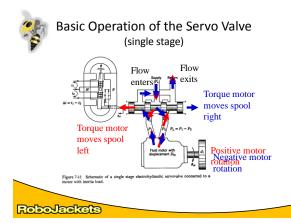
More work possibilities

RoboJackets

How much energy in your tank can you use?

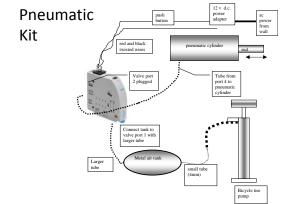

- Line losses: Pressure drop proportional to flow
- Throttling losses: Pressure drop proportional to flow squared
- Cylinder friction: Coulomb plus viscous friction, depends on seals


RoboJackets



Force available

- Pressure x Area = Force
- Area = pi x Bore² / 4
- For Festo cylinder (at 80psi or 5.516 bar):
 - Bore = 20 mm → Area = 314 mm²
 - Force = 551,600 x 314 x 10⁻⁶ = 173 N
 - at 100 psi: F = 217 N



Components for hands on task

- Cylinder: single acting, spring return
 - Max force: 169 N or 38 lbf
 - Stroke: 50 mm or 1.987 in
 - Bore: 20 mm or 0.787 in
- Valve:
 - 4-way, 2-position
 - normally closed, vents to atmosphere
- · Reservoir:
 - Size: 400 ml or 24.4 in³
 - Max pressure: 16 bar (105 bar) or 232 psi

Robo-Jackets

Some YouTube Videos

- http://www.youtube.com/watch?v=jkft2qaKv
- http://www.youtube.com/watch?v=0gk-yQ1H3M8
- http://www.youtube.com/watch?v=7l0qlO7y6 Cc
- http://www.youtube.com/watch?v=2cluuplW RIQ