

The George W. Woodruff School of Mechanical Engineering

2008 TE Sessions Supported by

CATERPILLAR®

NATIONALRockweiiINSTRUMENTSAutomation

College of Computing

Introduction to Robotics and Structures

www.robojackets.org

Info

GAT

- Sponsors
 - Caterpillar
 - Rockwell Automation, National Instruments
 - College of Computing
- Key Contacts
 - Andy Bardagjy <u>andyb@gatech.edu</u>
 - Stefan Posey <u>stefan.posey@gatech.edu</u>
- Every Tuesday 5pm 7:30pm

About This Year

• Basic

- Ways to build, how to build, and how to succeed.

Advanced – Special Topics

- CAD, Topics in Robotics, Controls, etc.

Lectures and notes (pdf)

– <u>http://www.robojackets.org</u> (click on TE Sessions)

TE Session Final Competition

- When: November 8, 2008 @ 10 AM
- Where: Klaus Advanced Computing Building

Food will be provided
– College of Computing

TE Schedule

09/16

09/23

09/30

10/07

10/14

10/28

10/30

11/04

Basic

- Intro to Robotics & Structures 09/09
- Mechanical Power Trans
- Drive Types
- Manipulation & Fluid Power
- Fabrication, Safety, and Elect
- Introduction to LabVIEW
- LabVIEW 2
- LabVIEW 3
- LabVIEW and Compact Rio

Advanced / Special

- Advanced Robotics
- Advanced Robotics II
- Manipulation
- Autodesk Inventor

INTRODUCTION TO ROBOTICS

What is a robot?

- Characteristics
 - Detects surroundings / environment
 - Make decisions based on surroundings
- Basic Idea A vehicle / platform that can compete tasks with out human interaction.
 - Autonomous capabilities and Sensors

Roots and History

- 3rd century BC first automated device
- 1920 word robot first used
- 1941 Asimov coins robotics
- 1963 1st pallet robot
- Science Fiction

- Kitt, Cylons, RoboCop, T1000, Data

Laws of Robotics

- 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- 2. A robot must obey orders given to it by human beings, except where such orders would conflict with the First Law.
- 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Applications

- Commercial / Industrial
- Government / Military
- Research
- College Competitions

App: Commercial / Industrial

- iRobot
 - Roomba
- KUKA
- FANUC
- EPSON

Roboleckers

App: Government / Military

- Defense
 - Phalanx CIWS
- UAV
 - Surveillance
 - Communication
- Rescue
- Bomb Disposal

App: Research

- NASA
 - Rovers, Landers, Satellites
- DOD
 - DARPA
- Georgia Tech
 - Robotics and Intelligent Machines
 - http://robotics.gatech.edu
 - BORG Lab, IMDL, UAV Lab, etc
 - GTRI

App: College Competitions

- FIRST* (mentor)
- RoboCup
 - Small Size*
 - Medium
 - Humanoid
- BattleBots*
- AUVSI
 - IGVC* Ground
 - AUVC Underwater
 - IARC Arial
- IEEE
- More Note * = RoboJackets Team

MATERIALS & STRUCTURES

Mechanical Basics

Motivation:

- Strong structures can fail catastrophically
- Geometry of design can contribute to or prevent failures
- Material selection can also be crucial

or or les

Forces

• Gravity

or Fro

- Its everywhere
- Isaac Newton
 - 2nd Law F=ma
 - a = acceleration
 - From gravity
 - 32.2 ft/s², 9.81 m/s²
 - From motors
 - From hitting another robot
 - m = mass of object (lb_{mass}, kg)

Forces

- Weight
 - On Earth, a = 9.81 m/s²
 - F = 1 kg x 9.81 m/s² = 9.81 N
 - On the Moon, $a = 1.6 \text{ m/s}^2$
 - F = 1 kg x 1.6 m/s² = 1.6 N
 - In outer space, $a \approx 0 \text{ m/s}^2$
 - $F = 1 \text{ kg x } 0 \text{ m/s}^2 = 0 \text{ N}$
- Same mass different weight

Stresses

- Materials Bend (not ridged)
 - Everything deforms before it breaks
 - Elastic
 - Stretches a lot before it breaks
 - Rubber (Rating \rightarrow Durometer)
 - Brittle
 - Not much stretching before breaking occurs
 - Will have cracks (glass)
- Stress
 - Force / Area (psi, Pa)

-00-0-

Stresses

Area Cross-section through force Circular pi * (radius)² Rectangular L*H Stress: Tension Compression

Stresses

Materials Bend Everything stretches before it breaks

Single Point Bending

Cantilever Beam:

Force Applied:

Deflection:

End of beam deflects in direction of force If deflection is large enough, stresses will cause beam to permanently deform

Thoughts:

Large deflections can occur without damage Large moments may be difficult to resist Cantilevered loads can be avoided

Shear Stress

Shear

While bending results in tension and compression Shear loads produce different stresses

Single and double shear:

Double shear setups reduce load on pins by 1/2

Materials - Steel

- Traits
 - Strong and heavy
- Steel is a combination of Iron and Carbon
 - Carbon Steel or Stainless? Various grades:
 - Carbon
 - Low carbon: more flexible, yields at lower stress (AISI 1006 1020)
 - High carbon: more brittle, yields less before failure (AISI 1060+)
 - Stainless
 - Stainless resists oxidation (rust), difficult to work with & \$\$\$
 - 304, 304L, and 316 are most common

Materials - Aluminum

- Traits
 - Light, but weaker than steel
 - More expensive than steel
 - Limited flexibility
- Many grades
 - Common (6061, 2024)
 - Good fit for most applications.
 - Special Stuff (7000s, 4000s)
 - Higher strength, corrosion resistant, ultra-light, etc.
- Fatigue
 - When repeatedly flexed & stressed, cracks will develop, and the piece WILL fail

Materials - Plastics

- Plastics
 - Light, Flexible, Cheap, easy to machine
- Wide range available, what type?
 - HDPE: High Density Polyethylene
 - Flexible, white or black
 - Polycarbonates (Polycarb): Lexan
 - Very flexible, clear sheets
 - Acrylics: Plexiglas, etc
 - Brittle, clear sheets
 - Delrin: Acetal resin
 - Slick, low friction, many colors

Material Selection

Based on component properties

- Axles & Drive Components
 - Steel can withstand fatigue and stresses
 - Aluminum or plastics will wear and fail to quickly
- Frame
 - Aluminum beams will be easy to cut and drill, stay lightweight
 - Steel will be very strong and easily weldable
- Arms
 - Aluminum is lighter than steel, and with good design, will be strong
 - Steel is strong, but too heavy to be an arm
- Body Panels
 - Aluminum and steel are both too heavy
 - Polycarbonates work well.
 - Acrylics can, but think about shattering.

Additional Info on Materials

- http://www.matweb.com/
- http://www.mcmaster.com/
 - Go to Raw Materials & browse

How to Build a Box

(A ok one)

- What makes a box ok?
 - Should be able to support weight
 - Should be light
 - Shouldn't flex too much under loads

How to Build a Box

(A better one)

- What makes a box better?
 - Members spanning sides can prevent buckling
 - Shouldn't flex too much under side loads

How to Build a Box

(An even better one)

- What makes a box even better?
 - Members spanning corners are best
 - An X shape is preferable, but not always an option due to weight

Much stronger

Activity

- Build a cantilevered structure to support as many coins as possible
 - In the event of a tie the team with the most left over will win
 - For every ½ ft of length = multiplier to coin #
 - Materials
 - 1 Box of Straws
 - 1 Role of tape
 - 10 sheets of copy paper

RoboJackets

Try This At Home

West Point Bridge Designer®

Free download

Try This At Home

West Point Bridge Designer® Run a real simulation on it

Watch the beams stretch and

Legal

These slides and more are available at

http://www.robojackets.org

All media included is either in the public domain, generated by the author/s or covered by Fair Use of Copyrighted Material for Educational Purposes Title 17 Chapter 1 107 (which is reproduced in the next slide).

> For more information contact the RoboJackets. (contact info available via the web)

Legal

Title 17 Chapter 1 107. Limitations on exclusive rights: Fair use

Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include—

- (1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes;
- (2) the nature of the copyrighted work;
- (3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and
- (4) the effect of the use upon the potential market for or value of the copyrighted work.

The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon consideration of all the above factors.

