
Sedani Design Report
Georgia Institute of Technology - RoboJackets

Matthew Barulic
mbarulic@gatech.edu

Evan Bretl
evan.bretl@gatech.edu

Sahit Chintalapudi
schintalapudi@gatech.edu

Varun Madabushi
vmadabushi3@gatech.edu

Joseph Spall IV
jspall3@gatech.edu

Fig. 1. RoboJackets’ new RoboRacing platform, Sedani.

Abstract—This report introduces Sedani, Georgia Institute of
Technology (Georgia Tech)’s entry into the 2018 International
Autonomous Robot Racing Competition (IARRC). We discuss
what advances our team has made between 2017 and 2018 and
how these advances allow us to tackle the multiple challenges
IARRC poses across controls, localization, and perception.

I. INTRODUCTION

RoboJackets is the Georgia Tech competitive robotics team.
The team was founded in 1999 dedicated to robotics pro-
motion, education, and advancement throughout the Georgia
Tech community and beyond. RoboJackets currently has over
200 dues-paying members, about 15 of which are involved on
the IARRC team. RoboRacing consists of three subteams led
by a project manager. The project manager’s responsibilities
include placing orders, setting milestones for the team, and
making sure the team hits those milestones. The three sub-
teams — electrical, mechanical, and software — are each led
by subteam leads who are responsible for coordinating with
each other and the members of their own subteam.

This year we are bringing a new robot to the University of
Waterloo, which we call Sedani (Fig. 1). This new platform
attempts to address usability and power problems with our
previous robot, Macaroni. The details of Sedani’s mechanical
and electrical design are described in Section II and Section
III respectively. Our autonomous racing software has also
seen significant improvements in our steering and stoplight
detection algorithms, as described in Section IV.

II. MECHANICAL

A. System Overview

The mechanical platform is charged with the task of quickly
and safely carrying the computing and sensor equipment
necessary for autonomous racing. Our team has once again
taken the general approach of modifying a remote controlled
car to serve as our mechanical platform. This section will cover
the design considerations that motivated the changes we’ve
made this year, and then discuss each part of the mechanical
design in more detail.

B. Design Considerations

As a small team, RoboJackets has traditionally tried to start
with a stable platform by modifying a commercial remote
control car to fit our autonomous equipment. While this stock
chassis takes care of a lot of the more complicated mechanical
problems for us (ie. suspension, drive train, and steering), it
also introduces pre-existing geometry against which we have
to design our custom portions. In particular, Macaroni, having
been built from a 1/10th scale stock chassis, experienced many
problems related to trying to fit a lot of computing onto a
relatively small vehicle.

Macaroni’s small stock chassis required our team to replace
the bulk of the chassis’s structure with larger, custom parts.
This gradually led to a design where each subsystem depended
on the others. Trying to upgrade any one piece (ie. changing
the computer), required a heavy redesign of a large number
of the car’s parts. Additionally, because these parts were
structural to the car, they were cut from metal for robustness
and relative ease of manufacturing in our shop. This resulted in
a vehicle that was much heavier than its chassis was designed
for. It became difficult to find motors and gearing rated for a
15 pound, 1/10th scale car.

Our mechanical team decided on two changes to our
approach to help us avoid these problems when designing
Sedani: a larger stock chassis and a more modular design. We
broke the system down into two primary modules: the chassis
module and compute module. The chassis module houses
all of the electronics necessary to drive the car manually,
including any emergency stop and autonomous-manual control
switching functionality. The compute module houses the high-
level computing and sensing hardware. Sections II-C and II-D
describe each of these modules in detail.

Fig. 2. The Losi 1/6th Scale Super Baja Rey, the stock chassis for Sedani.

Fig. 3. Digital design of Sedani’s chassis electronics enclosure.

C. Chassis Module

Sedani’s chassis is based on the Losi 1/6th scale Super
Baja Rey 4x4 Performance Desert Truck [3], shown in Fig.
2. Inspired by the work of Georgia Tech’s AutoRally project
[4], we were searching for an affordable car close to 1/5th
scale. The Losi truck is a brand new product (released in
March 2018) which offers a lot of great racing technology at an
affordable price. Our second criteria was ease of modification.
We were looking for a chassis with a variety of places to
mount extra hardware and built robustly enough to support
extra weight. The Losi truck is built using largely flat plastic
and metal parts that are screwed together. We took advantage
of this by strategically replacing a small number of the plastic
parts and using the existing screw points.

The chassis module required two modifications to the stock
chassis: an enclosure for the chassis control electronics (Fig.
3), and a replacement battery compartment with mounting
holes for the vehicle’s electronic speed controller (ESC) (Fig.
4). Both of these new parts were manufactured using a
combination of 3D-printed PLA plastic and laser-cut Acrylic.
These techniques allowed us to quickly and easily create parts
that match well with the existing geometry of the car. Because
neither of these components bear any significant loads during a
vehicle crash, we are comfortable making them out of plastics.

Fig. 4. Custom battery enclosure with ESC mounted.

Fig. 5. Digital design of Sedani’s compute module.

D. Compute Module

The compute module, shown in Fig. 5, required the re-
placement of a few cosmetic and roll cage components of
the top of the vehicle with an enclosure for the computing
and sensing hardware. As this is a larger modification than
either of the chassis enclosures and functions as part of the
vehicle’s roll cage, the computing enclosure needs to be much
more robust. To this end, the compute module was designed as
two, folded sheet aluminum plates. The lower plate provides a
surface on which to mount our computer, computing battery,
and various power-management hardware. The upper plate
provides a mounting point for the camera and emergency stop
button, while adding structural integrity to the surrounding roll
cage sections.

The right angle flanges along the edges of the plates provide
good mitigation against the plates bending or deforming. They
also provide surfaces for panel-mounted components, such as
the external barrel connector for the hot swap power system,
described in Section III-C1. The compute module is further
reinforced by a set of vertical aluminum standoffs that span
between the two plates.

Fig. 6. The custom PCB for interfacing with the chassis electronics system.

III. ELECTRICAL

A. System Overview

The system is split into two distinct categories: the chassis
and the computing electronics. Chassis electronics handle all
drive control, steering control, emergency stop, state noti-
fication, and remote data collection. Computing electronics
involve mainly the Intel NUC and FLIR Blackfly Camera.
Both systems have separate batteries, allowing for each to run
independently and to reduce noise between each. The split
of the systems allows for maintenance on each individually
without requiring the presence of the other system, allowing
the mechanical team to work on the chassis and the software
team to work on the sensor suite without interfering with each
other. This modularity was a goal from the start of the project.

A large focus this year was on pre-manufactured compo-
nents. In the past, the electrical team heavily experimented
with custom printed circuit boards, which allowed for greater
specialization for the use case. However, this experimentation
lead to a less reliable system. The goal has become to make
custom electronics at a slower pace, replacing a few sub-
systems at a time. This allows for the system to remain
stable while improving efficiency and reducing size over time.
Additionally, buying pre-made components allows for multiple
back-ups that can be replaced in the event of component failure
driving or testing.

B. Chassis Electronics

The chassis electronics allow for direct control of the
robot. A custom printed circuit board (PCB) was designed
to interface with all of the desired electronics in the chassis
electronics system, allowing for smooth integration of the
various components (see Fig. 6). The majority of components
are through-hole, allowing for ease of construction and higher
quality of manufacturing. All components are labeled with
silk-screen for ease of identification and orientation.

1) Drive and Steering: The drive and steering system use
the stock motor, servos, and ESC that came with the Losi car.
The drive motor is a Dynamite Fuze 1/6 1200KV brushless
motor, designed to carry the robot at stock up to 50 mph.
The motor is much larger compared to Macaroni, hopefully
compensating for the additional weight from the added hard-
ware. The steering servo is a Spektrum S904 waterproof

digital servo, allowing for high torque and fast reaction time.
The Dynamite 160A Waterproof Electronic Speed Controller
(ESC) serves as the bridge between the microcontroller or
remote to the motor. Our speed control relies on a feed-forward
relation between PWM input and driving speed. Sedani’s ESC,
unlike Macaroni’s, has a built in failsafe, so a loss of signal
connection causes the ESC to brake. The emergency stop
system takes advantage of this and is elaborated on later in
section III-B4.

2) Microcontroller: For a microcontroller, the team choose
a 5V/16MHz Sparkfun Pro Micro. The package allows for a
small, reliable Arduino-compatible system. The board is based
on the ATmega32U4 chip and has an on-board micro-USB for
programming and serial communication. The USB connection
receives power from the NUC and allows for information to
be passed to higher level control software, discussed further
in section IV.

3) Remote Control: The Pro Micro interfaces with the ESC
and steering servo through a Pololu 4-Channel RC Servo
Multiplexer board. The Pololu Mux board breaks out the
74VHC157 Quad 2-Input chip, allowing for either control
based on PWM output from the Pro Micro for autonomous
driving or from a PWM signal from an HK-GT2B radio
receiver for remote control during mechanical testing and data
collection. The board also allows for power distribution for the
servo and HK-GT2B radio, running at 6V.

4) Emergency Stop: The chassis electronics system inter-
faces with a Simple 315MHz Latching RF L4 receiver for
emergency stopping and state change. The wireless remote has
three outputs that both connect to digital inputs on the Pro
Micro and all feed in to the driving element of a DFRobot
Gravity relay. The connection to the Pro Micro allows for
different firmware states to be selected: autonomous course,
autonomous drag race, and manual with data collection. The
Gravity relay connection closes the normally open path be-
tween the ESC output signal from either the remote control or
the Pro Micro and the actual ESC, defaulting to an off-mode
in the event that the Pro Micro fails. The mechanical relay
allows for complete isolation. A standard pushbutton e-stop
exceeding the minimum 30 cm also exists for redundancy.

5) Notification: The last element of the chassis electronics
is the newly-added sound notification system. The system
involves a simple 1.5 Watt speaker connected to a SparkFun
Mono Audio Amp Breakout board. The SparkFun Audio Amp
serves as a break-out board to the TPA2005D1 chip with 10k
potentiometer volume control and shutdown input for deacti-
vation. Simple note patterns can be played with the Arduino
tone library, allowing for notification of state changes such as
starting autonomous mode or firmware upload. This system is
convenient for quick understanding of simple variable changes
without a visual display.

C. Computing Electronics

The computing electronics mainly focus on much higher
level control of the robot (Fig. 7). A custom computing box
contains the power Hot Swap Board, the Intel NUC, and

Fig. 7. The installed compute module.

the FLIR Blackfly Camera. The system only has a serial
connection from the Intel NUC to the chassis electronics
through USB, being completely isolated otherwise.

1) Hot Swap Power System: The entire system is powered
through the mini-box.com Y-PWR Hot Swap board. The board
allows for the robot to be powered by either a wall-socket AC
to DC power converter or the on-board battery. This swapping
ability gives greater flexibility to the software team when it
comes to making more lengthy code changes while being
powered by the 120 VAC outlet without having to replace and
charge batteries as often or requiring the NUC to be powered
down between sessions.

2) Intel NUC: The Intel NUC acts as the central compute
platform. The NUC has an Intel 8th generation i5 laptop
processor and 8GB of RAM in a compact 4 inch by 4 inch
package. This allows for high levels of computing with a small
physical footprint. A more in-depth description of the software
use of the Intel NUC occurs in section IV-A.

3) FLIR Blackfly Camera: The FLIR Blackfly USB3 Cam-
era is the main sensor on the robot. It has a computar
T2616FICS 1/3” monofocal manual iris lens at 2.6mm. It
is a rolling shutter camera to allow for higher frame rate,
minimizing blur from incidents such as driving over bumps
or moving at high speeds. The camera is essential to the main
neural network training and control, being further described
in section IV-B2.

IV. SOFTWARE

A. System Overview

Our software is executed on an Intel NUC running Ubuntu.
We use ROS, an open-source robotics framework with C++
and Python bindings, to build the racing logic. ROS is designed
to facilitate communication between modular units of code
working in tandem to drive the robot. It comes with many
advantages, including out-of-the-box sensor support and easy
integration with simulation. Our code is open-source under the
MIT License and is available at https://github.com/robojackets/
roboracing-software In IV-B, we discuss RoboJackets’ biggest
software advancement between this year and the last by
replacing our previous lane detection and path planning logic
in favor of a deep learning based approach. In IV-C, we discuss
how we handle stoplight detection (challenge 3 of IARRC) and

in IV-D, we discuss how we safely stop the vehicle after the
finish line.

B. Deep Learning Based Autonomous Driving

The main means through which the robot decides how to
steer is through an artificial neural network. Neural networks
approximate functions on input data by applying successive
“layers” of linear and nonlinear functions. Each layer consists
of multiple “nodes,” and the value at each node is a weighted
sum of values from the previous layer passed through an
activation function. In other words, if xi is a vector of inputs
or values from a layer, g is an (nonlinear, monotonically
increasing) activation function, and W is a matrix of learned
weights, then the values at layer 1 would be x1 = g(Wx0).
Networks with many of these layers are categorized as deep
learning. They are the state of the art in a wide range of
practical AI tasks, in particular those tasks which require
processing images or other high-dimensional data. Our neural
network implements “end-to-end” control [1], meaning that
the input to the network is a frame from the forward-facing
camera feed and the output of the network is a steering angle.
The target speed of the vehicle is determined from the steering
angle via the linear relationship speed = v0 − α ∗ |steer|,
where v0 represents the straight-line speed and α represents a
proportionality constant that is tuned to slow down the car a
reasonable amount when turning.

1) Rationale: Driving almost entirely via neural network
control is a major improvement from our entries in past years.
Historically, we have performed color matching on the image
feed to identify safe and unsafe regions and used that result
to perform local path planning. The decision to change is
largely based on brittleness of the color matching with respect
to varying lighting conditions. The colors of both obstacles
and non-obstacles change for a variety of reasons during
competition, making color-based recognition very difficult
and time-consuming with hand-designed heuristics. The ideal
obstacle-identifying heuristic does not depend much on the
lighting of the scene. Conveniently, neural networks have
been shown to excel at tasks where processing rich data (e.g.
images) is difficult via explicit programming. Given training
examples across multiple lighting conditions, a neural network
is able to learn lighting-independent rules for steering the
vehicle. Another benefit of the new machine learning approach
is in development time. The task of the software team in
preparation for competition is the relatively fast and easy
process of collecting training data for the neural network.
Finally, using a neural network greatly simplifies the stack
of software that we maintain for competition, as the entire
system runs in one Python process. Choosing to use a neural
network does have at least one drawback; it is a “black-box”
with almost no affordance given to explaining why a certain
steering angle was picked for a given input. We consider the
benefits in processing rich data and easing development to be
worth any drawbacks.

2) Neural Network Architecture: Our neural network is
implemented in Keras, a Python library built on top of the

https://github.com/robojackets/roboracing-software
https://github.com/robojackets/roboracing-software

popular TensorFlow machine learning framework. It is a
convolutional neural network (CNN), drawing its structure
from popular image categorization networks. Ours is much
simpler than those at the state of the art in image classification;
we are working with less data, and so the extra complexity is
not worthwhile.

• Input: The input to our network is a color image of
dimension 48 rows by 128 columns. The low resolution
of the image allows for a smaller, faster-to-train network
that is more likely to key on large, important details than
small, less-relevant ones.

• Convolutional Layers: We use a convolutional structure in
the first two layers, meaning that the learned parameters
in the network comprise linear filters that are convolved
(passed or slid) across the image [2]. This technique
simultaneously reduces the number of parameters to train
and increases performance on spatially-correlated data.
These two layers have 32 and 64 3x3 filters, respectively.
Both use the ReLU (Rectified Linear Unit) activation
function g(z) = max(0, z). Max-pooling is also em-
ployed to down-sample the filtered image after each
convolutional layer.

• Fully-Connected Layers: The following two layers of
the network are fully-connected layers with 128 and 32
nodes, respectively, also using ReLU for the activation
function.

• Output Layer: The output of the network is a selection of
one of five categories: hard left, easy left, straight, easy
right, or hard right. Discretizing the output in such a way
simplifies the learning task, and a simpler task means that
good results can be found from less data. This output
layer is implemented via the softmax activation function,
which outputs probabilities over five output nodes that
together sum to one.

3) Data Labeling and Training: For many deep learning
tasks, such as image classification, labeling enough training
data with the correct outputs is a long and painstaking pro-
cess. In contrast, data collection for our end-to-end network
is straightforward. The robot is driven around a track by
human “expert” while a script saves pairs of images and
steering angles to the robot’s storage. At training time, these
examples are played back in random order, and the AdaDelta
optimization algorithm updates the parameters of the network
to bring its output closer to what the human driver chose. As
such, our system falls under the “supervised learning” class
of machine learning systems. Training goes through every
example in a specified set several times before its accuracy
ceases to increase.

We employ several techniques to get more robust results
from limited training data. First, we use dropout regularization
before the first fully-connected layer and before the output
layer. Dropout randomly, temporarily zeros out weights in the
network. Since a node in the network does not have access to
every piece of information from the layer before it, dropout
encourages the network to look at overall shapes rather than

Fig. 8. The Gazebo simulator as used for data collection and model validation.

individual pixels. Second, we apply random horizontal flips to
training images (and the corresponding steering angle labels)
with a random chance of 40 percent. This helps remove bias
from the training examples, which may have more turns in
one direction than the other. Third, we add random Gaussian
noise into the pixel intensity values of images during training.
This has an effect similar to dropout in that it discourages the
network from focusing on single pixels or other small features.

4) Testing Methodology and Informal Results: We validated
our model both in simulation and on a real robot platform.
We used Gazebo, a robot simulator with ROS integration, to
run the first tests of the deep learning system (see Fig. 8). It
performed well when trained and tested on simulated tracks,
including one with false boundary lines and other adverse
features. The network could ignore some of these features in
a way that our old hand-designed detectors were never able
to do. We then trained the network on data from driving our
robot around a small test track. Using around 10 minutes of
data collection, the neural network was able to guide the car
around a track that had a different layout than the one used
for training.

C. Stoplight Detection

The stoplight is bright enough that each camera we have
used is fairly overwhelmed or saturated. The red and green
lights show up as white-tinged-red and white-tinged-blue,
respectively. We have solved this problem by looking more for
the location of the lights than their color. First, the algorithm
finds the difference between the current frame and one it
observed a fraction of a second ago. Image matrices are
computed for the loss in the red channel and the gain the blue
channel (the blue color is more prominent than the green).
The elements of the blue gain matrix are shifted by a fixed
amount so that they are expected to overlap the red. Then the
two matrices are multiplied element-wise and smoothed with a
large linear filter. Finding a large value in the resulting matrix
means that a large area lit up blue (green) below another large
area that became less red, and these two areas are roughly
the right distance apart. If a large value is found in the result
matrix, a start signal is sent to the rest of the system.

We have tested this system using the robot’s camera and the
same stoplight model that is used in competition. In addition,
we have practiced tuning the parameters of the algorithm in
preparation for adjustments at competition. These parameters
include the radius in pixels of the stoplight and the distance
between the centers of the two lights.

D. Finish Line Detection

Our finish line detector exploits the bright, unique color of
the finish line by performing color matching. We prefer the
HSV (hue, saturation, value) color space over RGB because
it is more robust to lighting conditions. Pixels are identified
as potentially part of the finish line if they fall within a range
of hues near magenta and have relatively high saturation and
value. An image is classified as containing a finish line if
enough total pixels match the color criteria and enough of
those pixels line up horizontally. For example, a magenta flag
on the side of the track is not classified as a finish line because
it takes up a small horizontal space in the image.

REFERENCES

[1] Y. LeCun, U. Muller, J. Ben, E. Cosatto, B. Flepp,“Off-Road Obstacle
Avoidance through End-to-End Learning” Neural Information Process-
ing Systems, 2005.

[2] “Feature Extraction Using Convolution”, Unsupervised Feature
Learning and Deep Learning Tutorial. [Online]. Available:
http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/

[3] Losi Super Baja Rey product page
http://www.losi.com/Products/Default.aspx?ProdID=LOS05013T1

[4] AutoRally
http://autorally.github.io

	Introduction
	Mechanical
	System Overview
	Design Considerations
	Chassis Module
	Compute Module

	Electrical
	System Overview
	Chassis Electronics
	Drive and Steering
	Microcontroller
	Remote Control
	Emergency Stop
	Notification

	Computing Electronics
	Hot Swap Power System
	Intel NUC
	FLIR Blackfly Camera

	Software
	System Overview
	Deep Learning Based Autonomous Driving
	Rationale
	Neural Network Architecture
	Data Labeling and Training
	Testing Methodology and Informal Results

	Stoplight Detection
	Finish Line Detection

	References

