IGVC Qt — ROS Transition

2015 Competitive Season

The following document aims to present the motivations for switching from the single-process,
multi-threaded, signals-based event system of 2013 and 2014 to the Robot Operating System
(ROS - www.ros.org) framework as the foundation for the RoboJackets’ IGVC code base.

Current, Qt-Based System Overview

Our current architecture relies heavily on Qt Signals & Slots
(doc.gt.io/gt-5/signalsandslots.html). This system allows inheritors of QObject to broadcast
messages to any other QObject that choses to receive those messages. It is, at its core, a
delegation framework of the style frequently used to grant slightly more advanced callback
functionality to GUI elements.

Under this paradigm, our various modules take the form of single classes, some of which run
their own threaded loops for device query. This allows for the degree of parallelism we desire
to prevent any one sensor from dramatically slowing down any other sensor.

Unfortunately, though this system has served us well up to this point, new feature additions
are proving difficult and beginning to muddy the once clean communication framework. The
addition of the Coordinator system and desire for flexible data-logging semantics have been
especially difficult in the Qt Signals & Slots framework.

ROS Fundamentals

ROS is not an “operating system,” as its misleading name may suggest. It is, instead, a
messaging framework. The goal of the ROS community is to maintain a framework that
facilitates collaboration on domain-agnostic robotics software. One ideal result from the
existence of ROS would be that much of the “boiler-plate” code necessary to get any robotics
project started would already be taken care of for the developer by the community library,
encouraging rapid progress in robotic innovation. In practice, hardware platforms vary
tremendously and even the most basic functionality is still considered active research. This
means that the real benefit of ROS is its messaging framework and the features built directly
on this framework, such as data-logging, visualization, and distributed systems.


http://www.google.com/url?q=http%3A%2F%2Fwww.ros.org&sa=D&sntz=1&usg=AFQjCNFIN2b3R0K2ezmcpw_YCx74nN-NTQ
http://www.google.com/url?q=http%3A%2F%2Fdoc.qt.io%2Fqt-5%2Fsignalsandslots.html&sa=D&sntz=1&usg=AFQjCNGT6OeuqhFpERQ1hrQpeqK2Xsbyxg

Comparison

Qt ROS

e Simple message passing API e More complex messaging API

e Single-process design keeps code e Multi-process design scatters code
compact and local both in architecture and file system

e Extensive framework results in e Deep dependency graph with many
smaller dependency graph bridge packages needed

e Consistent API throughout code base e APl varies based on immediate

e Relatively inflexible application (ie, ROS code v. GUI

e Lack of any features beyond simple code)
messaging e Healthy library of messaging

e Code for non-domain features extensions (ie, data logging,
claiming first-class status among visualisation)
domain-specific code e Non-domain code relatively hidden

e Dependant on the gmake build from application developers
system to generate necessary e Dependent on the catkin build
meta-objects system

e Simple, single project file e Relatively complicated, nested build

files via CMakelLists

Specific Grievances with Qt Signals & Slots

Age

Though the Qt developers and community is active and growing, the framework predates
even the C++ Standard Library. In the name of backwards compatibility, Qt APIs are slow to
change and are rarely compatible with the latest and greatest in C++ syntax and technology.
In addition, Qt prefers to deal in its own implementations of standard objects (ie, QString and
Qt collections), necessitating a great deal of code to convert between Qt objects and
Standard Library objects.

Related to this problem is Qt’s poor support of templates.Having only been introduced to C++
two years before Qt’s birth, templates were still young and out of the norm in C++
development during the important forming years of the framework. This means that there are
types like QStringList instead of a generic QList<QString>. Signals & Slots cannot be
templated, a frustrating limitation when approaching problems such as generic data logging.

Queuing

Message queuing is not controllable in Qt Signals & Slots. No matter how long a slot takes to
process a signal, it will have to process every signal emitted to its slot. This pales in
comparison to ROS’s fine-toothed control over how many messages are allowed to queue up
at any given subscriber before old messages are erased in favor of incoming data. This
becomes important when sensor nodes are pumping data in at a faster rate than intelligence
nodes can process them.



Coupling

Event-based architectures work best when nodes are completely decoupled, needing only to
know when data of a certain pattern is available without caring what the data’s source is. Of
course, this is only possible to an extent. Qt Signals & Slots, unfortunately, do not go as far as
they could to facilitate this decoupling. While there is certainly a large degree of separation
and flexibility in managing the signal graph, at some point, developer-facing code must
manually couple one signal to one slot, one pair at a time. There are cases where even this
level of coupling can become onerous. When a system benefits from dynamic configurations
of nodes and data connections, as IGVC does, implementing such a system becomes a
complicated developer-facing API, as evident in the recently added Coordinator system in the
IGVC code base.

Device Drivers

As a final note, it is worth mentioning the key benefit of the large library of community
packages available in ROS. Most, if not all, sensors and actuators will already have
ROS-enabled drivers written for them. This means application developers will spend less time
debugging hardware access code and more time focusing on intelligent parsing of the data.
Below follows a table of devices currently used on the IGVC platform and their ROS support
status

Device Status ROS Package
PointGrey Bumblebee 2 Official Package cameral394
SICK TiM 551 Official Package sick_tim
Ardupilot 3rd Party Package ardupilotmega-ros

Outback A321 GPS Partial Official Support gps_common


http://www.google.com/url?q=http%3A%2F%2Fwiki.ros.org%2Fcamera1394&sa=D&sntz=1&usg=AFQjCNEmIpzXbeav7NBbvZsm1cwGnGe9QA
http://www.google.com/url?q=http%3A%2F%2Fwiki.ros.org%2Fsick_tim&sa=D&sntz=1&usg=AFQjCNGbtRQKwpWCVHkFAAYBOviX3d3xHw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fposilva%2Fardupilotmega-ros&sa=D&sntz=1&usg=AFQjCNFo6OgX_F8nTzo4ctP1PEPXF0bHqA
http://www.google.com/url?q=http%3A%2F%2Fwiki.ros.org%2Fgps_common&sa=D&sntz=1&usg=AFQjCNGpHBB3mCTzUzivcmIs8t7zNL9Zmw

