
RoboJackets 2017 Team Description Paper

D. Budanov, J. Feltracco, J. Kamat, R. Medrano, S. Naeem, J. Neiger, R.
Osawa, M. Pan, E. Peterson, W. Stuckey, J. Ting, M. Woodward

Georgia Institute of Technology

Abstract. The RoboJackets RoboCup SSL team was founded in 2007
and has competed every year since. The team’s objective this year was to
use the lessons learned from the previous years to rebuild the mechanical
foundation, while improving the accompanying electrical and software
systems. An emphasis was placed on robustness of the system as a whole.
This paper outlines the progress made on the design of the fleet and the
methodologies used to manifest these improvements.

Keywords: RoboCup · RoboJackets · Small Size League

1 Mechanical

The mechanical design for this year’s fleet focuses on reducing the overall manu-
facturing time of the robot and redesigning a more reliable dribbler system. The
2017 fleet has managed to reduce manufacturing time by simplifying parts to
use primarily waterjet and manual mill operations as opposed to a CNC mill.

1.1 Dribbler

The 2017 dribbler system was redesigned based off of Carnegie Mellon’s dribbler
system [1]. The new design uses gravity to absorb the impact of the ball when
it is initially passed to the robot, as opposed to previous years’ designs that
implemented a spring as the dampening system. As shown in Figure 1, the ball
causes the dribbler to pivot upwards; due to gravity, it then returns to its neutral
position. This new system has been tested as more efficient and consistent at
catching the ball. Additionally, the new fleet implements brass gears on the
dribbler system, rather than the nylon gears used in the previous year’s design.
The brass gears have a larger tolerance between the meshing teeth and solve
the durability issues that had arisen with nylon gears. As in previous years, all
dribbler system components are designed to be manufactured using a waterjet,
reducing overall manufacturing time.

1.2 Motor Mounts

The 2017 fleet uses four identical waterjet fabricated motor mounts for the wheels
of the robot shown in Figure 2. This is a manufacturing improvement from last



Fig. 1: Dribbler Assembly

year’s fleet, as previously each motor mount was CNC milled and two different
motor mount designs were needed to accommodate the back and front positions.
Additionally, the motor mount now supports the midplate above it in addition
to the base plate to improve the robot’s stability.

1.3 Onmiwheels

The 2017 omniwheel design is composed of three layers that constrain the rollers.
Last year’s omniwheel design was composed of two layers, with the bottom layer
requiring a CNC operation [2]. The manufacturing time of the drivetrain was
decreased by implementing more waterjet operations over CNC mill operations,
as the waterjet supports nesting of parts, allowing for multiple parts to be cut
in a single operation. Previously, the manufacturing time of a wheel on the CNC
mill was approximately 90 minutes per wheel; now the manufacturing time using
the waterjet is 60 minutes per wheel. The total manufacturing time breaks down
to 10 minutes to set up the waterjet, 15 minutes to waterjet the 3 layers of
the wheel, and 35 minutes to tap the holes in the support layer of the wheel.
Additionally, due to the waterjet’s ability to nest parts onto a single sheet of
metal, mass production of a single part does not require any additional setup
time.

2



Fig. 2: Exploded View of Omniwheel

2 Electrical

The electrical design for this year has focused on improving the reliability of last
years design. This was accomplished by switching radio protocols, changing the
inter-board connectors, and improving PCB routing.

2.1 Ultra-Wideband Radios

The past years version of the robot used custom radio hardware designed in-
house for a 900 MHz system. These radios had multiple issues due to the diffi-
culty of designing custom radio hardware and firmware. The lack of reliability
resulted in frequent packet loss, especially with multiple robots in use. The 900
MHz band also limited our bit rate to a maximum of 1.2 Mbps, which bottle-
necked the information that could be transmitted between the robot and base
station. This issue became increasingly pressing as more sophisticated control
features were developed, requiring greater bandwidth between the robots and
base station.

The new DecaWave radio modules use ultra-wideband impulse radio (UWB-IR)
technology designed to avoid interference with traditional radio signals. The ra-
dio module transmits through a wide range of frequencies centered at 3.5 GHz at
low amplitudes, therefore reducing interference with nearby narrowband trans-
mitters and improving communication reliability. Figure 3 shows how the signal
of UWB-IR stays below the noise level, allowing for narrowband to transmit on
the same frequency without interference. Detecting signals below the noise level
is similar in principle to a human’s ability to detect features in a noisy image.
Figure 4a is a small section of a noise-drowned grayscale image. Some gradient
lines can be observed, but identifying the original image with a high level of

3



certainty is very difficult. This is analogous to communication methods utilizing
narrow band or spread spectrum techniques having difficulties accurately inter-
preting the received packet. The original image in Figure 4b, on the other hand,
can be identified with a high degree of certainty. UWB-IR operates in a similar
manner with the use of a wide range of frequencies.

The higher center frequency yields an elevated data transfer rate of 6.8 Mbps.
Such higher bandwidths permit larger amounts of control and status informa-
tion to be transferred between the robots and base station. The radio module
contains an integrated antenna and on-board RF circuitry, allowing for easier
integration into the robot and greater consistency across the platform.

Fig. 3

2.2 Solenoids

In order to experimentally determine the type of solenoid best suited for com-
petition, a method of rapidly prototyping was needed. Figure 5 displays the
mechanism used by the team to produce solenoids. The mechanism consists of
multiple rods attached to wooden blocks. On the center threaded rod, two alu-
minum spacers with tapers are pressed into the bobbin to keep it axially centered.
One spacer has a groove to act as a driven pulley in the system. The spool of
magnet wire used for winding the solenoid rests on the outer wooden rod, and
the wire adjuster rests on the two outer brass rods. To set up the solenoid winder,
a spool of magnet wire and a bobbin are placed on their respective rods. The
magnet wire is then threaded through the plastic pulleys in the wire adjuster
and attached to the cylinder. To wind the solenoid, a brushed DC motor drives
one aluminum spacer with a belt.

4



(a) Narrow Band (b) Ultra-Wideband

Fig. 4: Radio Band Comparison

Fig. 5

5



2.3 Motor Board

The motor board handles the primary power distribution and the motor driv-
ing functionality. The power distribution method has been changed to better
separate the power and logic voltage rails. Improvements include a linearly sym-
metrical layout, removal of unused features, and optimization of LED indicator
placement.

Figure 6 illustrates the critical components of the motor board. The primary
fuse has been reverted to a mini automotive blade fuse similar to the 2011
design [2011 PCB source]. This design uses the DRV8303 three-phase bridge
driver to handle most low-level driver features such as cross-conduction protec-
tion and bootstrap switching controls. Commutation logic is still handled within
the FPGA.

Fig. 6

2.4 Kicker Board

The kicker board has been reworked to allow standalone operation. The kicker
board features an ATtiny841 to switch power FETs to control kick power. While
a control board is present, this on-board microcontroller acts as an SPI slave
device and receives a command to kick or chip at a specific power. During stan-
dalone operation, on-board buttons can be used to control kicking or chipping
for testing. The ADC on the ATtiny841 monitors the high voltage rail. When a

6



kick or chip is triggered, there will be a large voltage drop. While this voltage
drop can’t be used as real-time feedback, it can be used to tune the kicking
velocity for future shots.

Like in previous years, the capacitor charger will use the LT3757 controller with
a flyback topology. Charge voltage is 250V into a bank of four 820uF capacitors
[3].

3 Software

This year, the software team improved path planning, motion control, and high
level plays. In particular, high level plays improved cohesion between offensive
and defensive strategy. There were significant developments in Automatic PID
Tuning and the RRT. Modularization of the codebase improved readability for
other teams.

3.1 Probability-Based Plays

High level plays have been changed to rely more on probabilities. A game of
soccer can be broken up into two major probabilities: a team’s ability to score
and ability to defend, represented by P(score) and P(defend) respectively. Due
to the complexity of a game of soccer, it is impractical to directly calculate
these probabilities, but they can be estimated through knowledge of the game
itself. These estimated probabilities are further split into different attributes to
simplify the implementation.

Offense P(score) is broken down into two attributes: the probability that the
team can move the ball to a certain position, and the probability that the team
can shoot and score from that position, P(pass) and P(shoot) respectively.

P(pass) can be calculated by estimating the error rate of the pass and mixing in
the likelihood of another robot blocking it. Each opponent robot is represented
as a bivariate normal distribution. The X and Y axes represent the location
on the field and the Z axis represents a robot’s chance to occupy that specific
location on the field. These distributions are all combined into a single 3D prob-
ability space. As shown in Figure 7b, a set of rays are cast radially from our kick
position towards a goal, representing the sampled normal distribution of our
potential kick. Each ray is used to estimate the chance of being blocked on that
path by finding the maximum Z coordinate along the ray. This represents the
probability that the kick will be blocked along that specific ray. The ray’s max Z
values are inverted so the Z values represent the chance the pass succeeds along
that ray as opposed to being blocked. They are then weighted based upon the
kick distribution’s sample value. A binary filter is applied to the resulting rays
to calculate whether the ray would intercept the target segment or completely
miss. Finally, the ray’s value are summed together and divided by the sum of

7



the sampled kick distribution’s values. The final result represents the chance
the kick will be successful and is linearly related with the actual mathematical
probability of the kick succeeding. This is visualized in Figure 7c.

P (pass) =

btarget∑
n=atarget

(1− α(n))× PDF (N(µkick, σ
2
kick), n)

b∑
n=a

PDF (N(µkick, σ2
kick), n)

(1)

α(n) = max({f(r1, θ1 − n) . . . f(rn, θn − n)}) (2)

f(rrobot, θrobot) = PDF (N(µrobot, σ
2
robot), rrobot × sin θrobot) (3)

P(shoot) is very similar to P(pass), but there are a few notable differences.
Free space is weighted more heavily when finding the best shooting position.
A more accurate algorithm is used to find the largest open segment inside the
goal. This is done by representing the target segment and the robot as a triangle
and splitting the triangle whenever a robot is predicted to block a potential
shot. Finally, the delta angle between the pass vector and the shot vector is also
taken into consideration as a more acute delta angle is much easier to act upon
accurately than a larger obtuse angle.

Defense Estimating P(defend) is more complex, as some of the robots’ specific
characteristics cannot be directly calculated. This requires a higher variance
probability curve as well as some in-match automatic tuning. P(defend) is esti-
mated through creating an opposition score for every individual opponent robot
in both their current state as well as their near future state. Each opposition
score is created through the weighted combination of multiple sub-scores, in-
cluding position on the field, shot chance, pass chance, predicted kick direction,
time until activation, and angle on the ball. Position on the field is much like
the one used in offense but angle on the goal and space is weighted higher in-
stead of distance to the goal. The space sub-score is shown in Figure 8b and
position on the field is shown in Figure 8c. Shot chance and pass chance are the
same calculations as the ones used in the offensive side. The only difference is
that opponent robots have a more accurate kick distribution. Kick direction is
predicted based on the combination of direction of movement onto the ball and
the facing direction of the opponent bot. Time until activation predicts the best
case time until a specific opponent robot will be able to act upon the ball. This
is used to weight robots more likely to receive the ball higher. Angle on the ball
represents the angle between the receive vector and the shot vector. The lower
the angle, the higher this score, as it is assumed to be an easier kick.

Out of the 5 robots (not including the goalie), two defenders are used on the
edge of the goalie zone to block direct shots from the ball location. To determine

8



(a) RoboCup field
layout referenced in
subsequent graphs.

(b) Robot position bi-
variate normal distribu-
tion graph with overlayed
rays centered at the target
rectangle visualizing the
P(pass) algorithm. Oppo-
nent robots are shown as
white circles.

(c) P(pass) at each point
on the field with the
target represented by
the rectangle. Opponent
robots are shown as white
circles.

Fig. 7

9



(a) RoboCup field
layout referenced in
subsequent graphs.

(b) Space sub-score shown
for each location. Oppo-
nent robots are shown as
white circles.

(c) ”Position on the field”
sub-score at each location.

Fig. 8

where the other 3 robots should be, score-based roles are used. The opponent
robot with the highest opposition score is pressured from the goal side. The
objective is to force a fumble or a pass. The opponent robot with the second
highest opposition score has its predicted pass blocked with a slight weight to-
wards blocking a predicted leading pass. With optimal blocking, this opponent
robot will be unavailable as a potential pass option.

The last position uses a modified radial blob detection algorithm to find the
highest opposition score area that can be defended against with a single robot.
A 2D space where the X axis is the angle in reference to the ball position and
the Y axis is the distance from the ball is used to estimate the optimal defense
position. The angle axis is bucketed uniformly based on the quantity of points in
that specific vertical bucket. The max bucket is found based on the total score in
that specific bucket. This max bucket is the start of the area to defend. Buckets
on either side of this max are added to the area based upon the derivative of
the total score as well as the absolute value as the algorithm moves to buckets
on either side of the max. This produces a concrete edge on which we can split
the entire 2D space into the foreground and background. The centroid of the
foreground is found by treating it as a simplified 3D space with the Z axis rep-
resenting the score. The resulting centroid is used as the main defense point for
the third and final robot. The point is defended on the goal side with a slight
weight towards the direction of the ball.

10



3.2 Automatic PID Tuning for Path Following

Properly tuning PID is critical to having well performing robots. An improp-
erly tuned PID controller can lead to oscillation, slow response time, and loss
of control of the robot. The high level motion control uses a PID controller to
minimize the error between the planned path and the actual course of the robots.

To implement automatic PID tuning, the team uses a Hill Climbing algorithm,
which attempts to minimize the sum of errors while a robot is given a consis-
tent task. The team chose to use Simple Hill Climbing [4], which adjusts the
PID coefficients by searching the space of possible points and maximizes the
result, leading to a properly tuned controller. When writing the Hill Climbing
algorithm, it was important to minimize the number of iterations needed to
find a maximum, or autotuning would become too time-consuming. To solve
this problem, the space is searched at a coarse level at first, and finer levels
are explored later. Automatic PID tuning was integrated directly into our PID
Controller module, allowing easy extensibility into other control systems, such
as drive motor controls in firmware.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

6

7

8

9

10

Iteration #

C
u
m

u
la

ti
v
e

E
rr

o
r

P
er

It
er

a
ti

o
n

Fig. 9: PID Autotuning Process

11



3.3 RRT Path Planning

The team uses the Rapidly-Exploring Random Tree (RRT) path planning algo-
rithm [2], because it can quickly compute valid paths and can be easily modified
to improve its performance. Our implementation includes a 2-dimensional state
space of horizontal and vertical position coordinates, populated with obstacles.
Each node in the tree represents an x-y position on the field, which builds on
previous nodes in its search for the goal state.

The team’s RRT implementation now utilizes a dynamic stepsize inspired by
Adaptive Stepsize Control (ASC) [5]. ASC is typically used in numerical anal-
ysis to limit the error accumulation of evaluating differential equations. This
error control is determined by calculating an estimate of the error, and then
compensating by adding an offset to the computation. When the RRT selects an
existing node in the tree from which to extend, the distance from that node to
the nearest obstacle is treated as the error estimate. The stepsize is then scaled
based on the distance such that a small distance to the nearest obstacle results
in a small stepsize, and a large distance to the nearest obstacle results in a larger
stepsize. Taking a larger step allows us to cover more ground in the search space,
reducing the runtime of the path planner, but can only be done when obstacles
are far away, such that the increased resolution would be unnecessary.

Searching for the node in the tree to extend from is often the most compu-
tationally expensive step of the RRT algorithm. In order to determine which
node in the tree is closest to the target coordinates, the RRT previously had to
iterate through all of the nodes in the tree to determine which of these points
is closest to the target point, which is an O(n) operation. In order to resolve
this inefficiency, the team has implemented k -d trees to assist in this process
[5]. A k -d tree is a type of binary tree that attempts to maintain balance by
dividing the state space evenly based on the number of nodes in each partition.
The branch that each node is stored under is determined by comparing that
node to the median of the node in that subtree. The k -d tree is also periodically
rebalanced in case an excess number of new nodes are added under the same
branch. This allows for guaranteed O(log(n)) retrieval of points near a specified
location, which improves the speed of the path planner.

3.4 Full Trajectory Planning

The waypoint path generated by the RRT planner is overlaid with a velocity
profile in order to create a full motion trajectory – position, velocity, and accel-
eration at each planned timestep. The team uses a two step process inspired by
the full Bézier spline motion trajectory planning in [6]. The system first creates
a Bézier spline path of consecutive Bézier curves from the waypoints given by
the RRT planner and then generates a velocity path to follow the Bézier path
within the robots motion constraints. The Bézier spline path both smooths the
trajectory and allow easy calculation of the instantaneous direction of movement

12



Fig. 10: RRT Adaptive Stepsize Control

through the 1st derivative of each spline. The velocity profile thus only needs
to describe the speed of the robot as it follows that trajectory limited by the
linear and centrifugal acceleration constraints. This was calculated with a simple
linearly constrained forward and backward pass as described in [6]. The full tra-
jectory planning system allows not only full prediction of the location and speed
of each robot at all points in time, but also a simple method to speed up or slow
down planned paths by naively multiplying the velocity profile by a constant.

One particular use case of this was to allow full planning of robot passes in-
cluding a forward pass shown in 11a and 11b. In the forward pass, one robot
kicks the ball down the field while another robot predicts the kick trajectory and
moves down the field, intercepting the ball with a line kick towards the goal. The
trajectory planned for the kicking robot is naively sped up and slowed down as
the predicted path of the ball is updated allowing the robot to intercept the
moving ball. This separate planning of the path and velocity profile also allows
more advanced velocity modification including moving slower on delicate tasks
such as aiming or avoiding moving obstacles by modifying the velocity path.

3.5 Open Source and Modularity

One of the largest issues when collaborating with other teams and learning from
their software stacks is inadequate modularity. It is difficult to quickly find useful
information due to the complexity and size typical of RoboCup implementations;

13



(a) Robot 4 has passed the ball down
the field and Robot 5 is moving to in-
tercept.

(b) Robot 5 has adjusted it’s trajectory
in order to intercept the ball success-
fully, kicking it towards the goal.

Fig. 11

it is even more difficult to utilize them. This can be solved by modularizing the
code base, making it easy for others to use and understand without dissecting
an entire RoboCup implementation.

The high level software and firmware were split into two independent parts.
In order to share information between parts of the software, a third project was
created called common, which contains radio protocols and modules useful to
both firmware and high level software, such as a time library, PID controller,
and geometry library. The path planner was separated into its own project, with
an API to make it easy to use, even for unrelated projects. Documentation was
created and published for each module [7].

In an effort to improve collaboration with other RoboCup teams, the team dis-
continued use of its custom simulator in favor of grSim [8]. By leveraging the
existing work put into grSim, development time spent on simulator maintenance
can be reduced. Any developments made by the team can also be merged back
into the mainline repository to benefit other teams using grSim.

Acknowledgements J. Carnahan, W. Chen, S. Csukas, J. Jones, B. Iachonkov

References

1. CMDragons RoboCup SSL Team. CMDragons 2009 Extended Team Description.
Technical report, Carnegie Mellon University, 2009.

14



2. RoboJackets RoboCup SSL Team. RoboJackets 2015 Team Description Paper.
Technical report, Georgia Institute of Technology, 2015.

3. RoboJackets RoboCup SSL Team. RoboJackets 2016 Team Description Paper.
Technical report, Georgia Institute of Technology, 2016.

4. Norvig, Peter Russel, Stuart J. Artificial Intelligence: A Modern Approach. Prentice
Hall, Upper Saddle River, New Jersey, 2 edition, 2003.

5. Press, William H. Teukolsky, Saul A. Vetterling, William T. Flannery, Brian P.
Numerical Recipes in C. Cambridge University Press, 2 edition, 1992.

6. Christoph Sprunk. Planning Motion Trajectories for Mobile Robots Using Splines.
Technical report, University of Freiburg, 2008.

7. RoboJackets RoboCup Repositories. https://github.com/RoboJackets. Accessed:
2017-02-20.

8. grSim Main Repository. https://github.com/mani-monaj/grSim. Accessed: 2017-
02-20.

15


