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Abstract. For the 2010 RoboCup SSL season, Georgia Tech RoboJack-
ets RoboCup SSL team has redesigned much of the system from our
previous year of international competition (2008) with both a significant
software upgrade and a new fleet of robots. Software has improved dra-
matically to incorporate a robust behavior-driven play system and an
optimal pass planning system. The 2010 robot fleet includes many incre-
mental improvements to address deficiencies in the previous design, as
well as the addition of a chipper and wheel encoders. This document de-
scribes our overall system, with a focus on the improved software system
and new mechanical design.

1 System and Team Overview

The robotic system is composed of three main subsystems: electrical, mechani-
cal, and software. Each component has a small team of individuals working under
a leader; the system leaders and the team leader communicate their findings and
progress to one another to ensure a successful system. Each team sets its own
goals and priorities with the team leader overseeing the entire process. As the
team grows, this hierarchy has allowed the team to react accordingly. All team
members are encouraged to participate at their own pace. Additionally, some
effort is made to recruit and train new members to ensure the team’s future.



2 Software

The new version of the software adds new passing capabilities using an optimization-
based approach. The previous system supported moving, shooting, and could
play the rules of soccer, but did not handle multirobot activity, such as passing,
in a reliable manner. This year, as in the previous year, we use the shared vision
system for field sensing using standardized patterns. For 2010, we will extend the
current system to implement a robust offensive passing system where the robots
acquire ball control and make a coordinated series of passes until it can shoot
on goal. We employ a multi-stage planner that creates initial plans with an an-
alytical planner and then performs nonlinear constrained optimization over the
positions of robots to create an improved plan that mixed low-level controllers
can execute.
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Fig. 1: A tree diagram showing a play structure of robots, where the five robots on the
team are divided into single goalie, and four field robots executing under a single play.

The underlying structure of the software system is a streamlined variation
on the Skills, Tactics and Plays (STP) framework, with more general plays
and behaviors, in which a “play” is a top-level structure that the strategic-level
gameplay module can switch between depending on the state of the game, and
“behaviors,” which encapsulate the functionality of either one robot or a set
of robots at once. A sample partitionoing of robots into behaviors by a top-
level play is shown in Figure 1. This accomplishes the same goals as the STP
framework, but without strict divisions between “Tactics’ and “Skills.” During
the last competition GT RoboCup SSL participated in, the system provided
sufficient means to manage a variety of scenarios required by the rules, but was
less robust in general fluid gameplay due to the inability to robustly collaborate
between robots. The offensive system at the time consisted of a pair of robots
that chase the ball around the field and try to make shots. This system, while
simple, is effective against weaker opponents, but proved no match for teams
with robust passing systems.

There are a variety of means of approaching optimization in the context of
high-dimensional systems, and this paper will focus on the relationship between



optimizing robot trajectories in an optimal controls sense with recovering robot
trajectories from measurements taken on the environment. The Simultaneous
Localization and Mapping (SLAM) problem is a canonical problem in the field,
where an optimization algorithm must find the most likely position of a robot in
an environment based on a series of measurements of the environment. Much of
the work in the field has focused on approaching this problem using Kalman or
particle filters [1–3] to represent the state of the system, however we will focus
on solutions that provide the entire trajectory of the robot, otherwise known as
the complete SLAM problem.

The basic Smoothing and Mapping (SAM) approach [4] to the problem uses
the information matrix to encode the relationship between the variables, which
is as an exact dual to the covariance matrix used in Kalman filters, but the key
in the SAM approach is that we do not need to keep keep the whole information
matrix, rather, we can store the square root of the information matrix, which
remains sparse during the course of optimization, a feature that we can exploit
to perform much more efficient optimization. The resulting operation used in
solving SLAM problems becomes a matter of developing fast, multi-variable
optimization algorithms, and there has been much work in this area to improve
the underlying optimization techniques, particularly from graph theory [5–7].
In particular, there are methods for incremental SAM [8], which are especially
useful when approaching the development of real-time systems.

In order to perform robust, efficient passing, we have decided on a particular
structure for the offense play. The basic concept is that if there is a shot available
or a sequence of passes to a shot (henceforth known as a ”shooting solution”),
then the system will construct the sequence of paths for robots and kicks, run a
nonlinear optimization technique to improve the path and ensure viability, and
then execute it.

The resulting system structure for the offensive passing algorithm has the
following structure, shown in Figure 2.

1. Analytic Planner Given the positions of all the robots and the ball, it
is possible to determine if there is a shot solution available with a simple
weighted graph search. This can be a simple heuristic for shot viability, or a
more sophisticated system as necessary.

2. Plan Evaluation We take a set of plans and sort by quality on a number
of metrics to create a good initial estimate for a plan.

3. Optimization With an initial estimate of a plan, the optimization engine
will be able to create a graphical model of the plan and optimize for an
optimal sequence of actions. The particular optimization engine is a nonlin-
ear constrained optimization algorithm primarily designed for Simultaneous
Localization and Mapping, but we will exploit the duality between this plan-
ning problem (create an optimal path from constraints) and SLAM (recover
a previously traveled path given measurements).

4. Execution Given a viable plan, we choose among a variety of motion plan-
ning and behavioral approaches can be used to execute the actions parame-
terized by the plan.
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Fig. 2: The plan optimization process, starting with a rough evaluation of plans and
then optimization of a small set to generate a single optimized plan.

The optimization algorithm comes from the GTSAM library [9] developed in
the Georgia Tech Robotics and Intelligent Machines (RIM) center with Frank
Dellaert, and derives from Sequential Quadratic Programming. This algorithm is
robust to both nonlinear systems and constraints, and has been reformulated to
work in a graphical model environment, which allows for an intuitive construction
of stochastic switched hybrid systems.

2.1 Analytic Planning

The analytic planner creates an initial set of pass plans, which consist of a
sequence of passes ending with a shot on goal given the robots on the field.
We do a search over these possible plans and construct a cost function for pass
solutions that penalizes passes that are too long or that are clearly blocked by
either an opponent or another teammate. Special care is taken to not penalize
solutions that have a possibility of being good passes at future levels of the
planner. Using this cost initial function, we sort possible passes and select a
subset of the best passes to send to the optimization phase.

The cost function used resembles the evaluation step in the STP planner,
though it differs because our pass structure is created before any robot has the
ball, and includes all possible passes, allowing us to optimize the passer and the
receivers, as well as the ball path.



2.2 Optimization

Once a plan has been selected for further evaluation, we use a constrained non-
linear optimization approach to find an improved solution. A key observation in
the development of the optimization technique is the dual nature between opti-
mizing a robot control system and SAM. In the SAM problem, the basic goal is
to recover a robot trajectory based on a set of constraints from the robot’s sensor
systems and motion models after the robot has moved through the environment.
In the controls case, the goal is to determine an optimal trajectory based on a
set of constraints, such as those on robot motion or obstacle avoidance. In both
cases, the goal is to recover a robot trajectory from a series of constraints, and
they primarily differ in what sort of constraints are applied. Rather than using
the formulation of optimal control, we will use a graphical model approach to
assemble a full cost function over the environment.

There are two steps to effective optimization of a soccer plan:

– Factor Graph Construction: we assemble a cost function to optimize using a
piecewise factor graph approach usually used in SAM solutions. This allows
development by means of combining a large number of constraint functions
that individually relate only a small number of variables.

– Nonlinear Optimization: after the general cost function is assembled, we use
Sequential Quadratic Programming (SQP) to reduce the a system with an
arbitrary smooth nonlinear cost function and constraint set to a quadratic
programming problem suitable for solving via Multi-frontal QR factoriza-
tion.

The formulation of actual factors in this approach, as it derives from the need
to define an error function in SAM, has the form of a function h(x) dependent
on the state of the system and a measurement z, where in the SAM case, the
h(x) is the generative measurement model and the z is the actual value of the
system, but in our system, h(x) describes the current state with relation to a
cost function, and z is the optimal value. Expressed in general form, these factors
combine as in (1) to form a nonlinear least squares problem, where x forms the
set of state variables, zk is the optimal value for the constraint, and Rk is a
weighting matrix on the cost function.

x∗ = argmin(
1
2

∑
k

‖hk(xk)− zk‖2Rk
) (1)

With this error-function approach, especially as it allows us to place rela-
tionships between variables in the system, we can build the cost function to
define an optimal solution. One of the basic cases where we assemble these cost
functions is to optimize for shorter passes between robots, as well as smaller
robot movements, which we express using an optimal distance where z = 0, and
h(x, y) = ‖x− y‖. By connecting all of nodes with constraints such as these,
we can simultaneously optimize the movement of robots and passes to find a
series of movements and passes that minimizes all of the distances. In this un-
constrained optimization case, we can approach the actual optimization using



nonlinear unconstrained optimization techniques such as Levenberg-Marquardt
or Gauss-Newton. Because of the least-squares formulation of a quadratic cost
function, we can approximate the Hessian of the overall cost function using only
the Jacobian of h(x). The factor can be approximated through a linearization of
the measurement function, which produces the Quadratic Programming problem
shown in (2).

x∗ = argmin(
1
2

∑
k

‖Hxk
x+ h(xk0)− z‖2Rk

) (2)

Some other cases where factors define a means to improve a plan:

– Maximizing the distance of pass trajectories from other robots to prevent
pass interception.

– Maximizing the distance between robot paths and opponent robots to avoid
collisions and improve movement speed.

– Minimizing the angle between the facing of a robot upon receiving a pass
and making the next pass so as to minimize the time necessary aiming.

While this approach works for basic scenarios, such as making the robots
move and pass the smallest possible distance, we also need to express hard
constraints on the motion and passing of robots, such as staying on the field and
not driving through other robots. These constraints are not just cost functions
to be minimized, but rather requirements that must be met for any solution to
be feasible. We can extend the previous expression to allow the incorporation of
these hard constraints by redefining the optimization problem as a Lagrangian
optimization problem, as in (3), where we minimize the cost function over the
states in the system and the Lagrange multiplier cofactors λ.

x∗ = argmin(
1
2

∑
k

‖hk(xk)− zk‖2Rk
− λT g(x)) (3)

We can express the constraints in the form of g(x), where g(x) defines a
vector-valued function where the constraints are considered fulfilled if g(x) ≤ 0,
which allows both equality constraints, such as ensuring passes arrive at the same
time and location as the robot receiving the pass, or inequality constraints, such
as maintaining bounds on the positions, velocities and acceleration of the robots
to keep them on the field and driving with viable commands. The addition of
these constraints requires a more sophisticated solution method, and in our case,
we use Sequential Quadratic Programming (SQP) to reduce the full nonlinear
constrained problem into a series of quadratic programming subproblems with
linear constraints, which can then be solved with a mixture of direct elimination
of the constrained variables, and unconstrained optimization on the remaining
variables [10].

2.3 Control

In order translate the plans to robots in the actual system, we have a number
of low-level controllers that execute commands. We can switch between various



control approaches for particular applications, which is necessary to avoid using
suboptimal performance in some situations. There are several means of issuing
commands to the robots to execute movements across the field:

RRT Planning For situations when we need a robot to move around other
robots, we can use a simple RRT-based system to find a path. This does,
however, have the problem that the resulting path is unpredictable, so it
cannot be used well with optimization-based approaches.

Direct Path Commands We can instruct a robot to execute a specific path,
which allows for more control by the higher-level modules in the system.

The low-level path execution uses a controller that drives the robots to their
destinations as fast as possible with the ideal trapezoidal velocity profile. Upon
starting movement, the robot begins at maximum acceleration until it reaches
maximum velocity, maintains the maximum velocity while following the path,
and then slows at its maximum deceleration rate to stop at its goal. The bounds
used in this model derive from empirical tests of robot performance.

3 Mechanical

Fig. 3: 2007 Robot (left) vs. 2008 Robot (center) vs. 2010 Robot CAD Rendering (right)

While our previous robots participated successfully in spirited competition, we
are developing a new team with increased capabilities for the 2010 season. In
particular, the 2010 robots boast a chipper and wheel encoders. Lessons learned
in competition and testing of the 2008 fleet motivated us to place special em-
phasis on increased manufacturability and reliability. Testing and validation of
new components uses the previous systems as benchmarks for comparison and
follows similar methods as those outlined in our 2008 Team Description Paper
[11]. The new team will be no larger than 179mm in diameter and 149mm tall.

3.1 Reliability, Manufacturability, and Maintainability

A number of improvements are planned to enhance manufacturability, relia-
bility, and maintainability of the 2010 team. In 2008, due to extreme cost cut-
ting, set screws were used, throughout the vehicles to attach gears to shafts.



As expected, this became an unfortunate reliability concern. In the 2010 design,
custom pinion shafts are used eliminating the need for set screws. In addition,
the use of pinion shafts makes the drive train more compact leaving more room
for ball manipulation apparatus.

Fig. 4: From right to left, (a) dribbler, (b) drive module, and (c) modified drive motor

To further increase the reliability and maintainability of the new team, the
drive modules are now held in place with two locating pins and a single screw
on the bottom and one screw on the top. The dribbler is attached to the bottom
plate with a similar screw and locating pin configuration. Both assemblies are
shown in Figure 4. These changes have decreased the number of screws in each
robot by over half and have increased the locational accuracy of all components.

3.2 Omni Wheel

Our latest designs address a few key problems with the old omniwheel design.
The previous designs suffered from excessive carpet fiber buildup which could be
only mitigated by a complex cleaning procedure. In addition, refinements were
made to accommodate the new drive modules.

To address carpet buildup, the edges of the rollers are now tapered. Addi-
tionally, the formerly sharp edges of the wheel bodies were filleted to provide a
smoother interaction with the carpet. To simplify cleaning procedures the new
fleet uses a small dowel pin as an axel for each roller. It should also be noted
that the new rollers are compatible with both 2008 and 2010 wheel bodies.

3.3 Drive Module

To make room for the chipper and wheel encoders, the drive modules had to
be completely redesigned. Each assembly is composed of a single plate which
supports both the motor and wheel and a plate to support the encoder. Just
as in previous years, we use Maxon EC45 pancake brushless motors. The gear
ratio was decreased slightly from 5:1 to 9:2 allowing for a slight increase in
speed. In addition, the gear teeth were made much larger making the drive train



less susceptible to fibers and and other foreign matter. This design change is
achieved through an internal gear mounted to the rear of each omni wheel which
mates with a custom pinion shaft installed in the motors. This shaft repaces the
stock shaft and protrudes out the rear of the motor connecting to an encoder.
A modified drive motor is shown in Figure 4.

3.4 Dribbler

The dribbler is the assembly which controls the ball during gameplay. The
mechanism utilizes a custom steel pinion shaft covered with silicone rubber tub-
ing to increase adhesion. Just as in 2008, a Maxon EC16 brushless motor mated
to a GP16A planetary gearhead spins the dribbler shaft through a simple 1:1.4
gearbox. The use of ball bearings rather than bushings increase efficiency and a
larger tooth size decreases susceptibility to foreign object contamination. Addi-
tionally, the assembly incorporates a break-beam ball sensor. The dribbler’s ball
coverage is no more than 19%.

3.5 Kicker

The robot’s kicker is the primary method of both scoring and passing. A solenoid
is mounted inside the robot and a large amount of current is discharged into it
from a capacitor bank. In order to accommodate a more powerful solenoid, large
off-the-shelf solenoids have been purchased and have had their casing removed
to fit dimensional restrictions. The changes will allow for more powerful kicks
while still allowing the kicker system to fit within the same size restrictions. A
more robust kicker boot has also been implemented which, unlike the 2008 kicker
boot, is designed so that it does not bend under the large forces felt while kicking
the ball. The kicker plunger will be made of a front aluminium component and
a rear steel component. The use of aluminium reduces energy losses due to the
solenoid’s magnetic field pulling back on the plunger after it has been fired.

3.6 Chipper

The chipper allows the robots to pass the ball by chipping it into the air. It can
shoot the ball over opponents and adds greater flexibility to planning algorithms
while reducing chances of interception. The chipper boot is located underneath
the kicker boot. When a robot is in possession of the ball, the dribbler rolls the
ball up against the chipper boot. The chipper is powered by a solenoid which
is mounted above the kicker solenoid. In order to transfer from the solenoid to
the chipper, two arms are used that act like levers. When the solenoid fires and
pulls the plunger back, the arms rotate and move the chipper boot forward,
chipping the ball up. Currently two different chipper systems are being tested.
The results will help determine the correct arm length, solenoid power, chipping
angle. To reduce mechanical losses from friction, future chipper system designs
will implement pancake solenoids which will fire in the same plane as the chipper
boot, removing the need for any mechanical interface.



4 Electrical

The electronics system is broken into the following two broad subsystems:

Controller Circuitry contains the radio link to the computers on the sidelines,
and all motor control functionality.

Kicker Circuitry drives the kicker and chipper solenoids.

In comparison to the previous design revision, we added a chipper solenoid, but
the charger and other switching mechanisms have remained largely the same.

Fig. 5: Block diagram for the controller board (left), and a photograph of the actual
board.

4.1 Controller

The primary functionality of the controller subsystem is to translate motor
speeds sent by the computer on the sidelines to actual motor values. Though
the controller is currently ”dumb” we hope in the future to enable more intelli-
gence on the robot.

The requirements of the electrical system derive from the requirements of
the drive and dribbler motors. Each motor has three phases connected in a wye
configuration and three hall effect sensors to establish rotor position. To drive
a brushless motor the rotor position is used to determine which coils should be
energized. A coil is energized with a half bridge. Each half bridge is composed of
an N and P channel FET driven by a Microchip FET driver (TC4428). There are
three half bridges per motor (one for each coil) for a total of 15 half bridges per
robot. With miscellaneous passives, the motor driver circuitry composes about
150 components on each board. The half bridges are driven by a Xilinx 100K
gate Spartan 3E (XC3S100E) FPGA. The FPGA is memory mapped to a NXP
ARM7 (LPC2103) which handles local feedback control with information from
US Digital encoders.

The robot communicates to the server via Texas Instruments CC1101 wireless
ASSC. This ASSC allows tuning from 779MHz to 928MHz including the 868MHz



ISM band. Packets from the radio modules are routed through the FPGA to
the ARM to allow for future work in hardware accelerated wireless protocol
research. Due to poor wireless performance in the previous year, and severe
space constraints in the current design, standard monopole antennas were not
used. Instead, a balanced dipole ”halo” antenna will be utilized. The antenna is
ideally suited for the challenge as it is very low profile and omnidirectional [12].

In a typical design, power supplies and their distribution are normally con-
sidered a trivial implementation task. In contrast, this design has five power
rails; 1V2, 1V8, 2V5, 3V3, and VBATT (12V). The many power rails present a
considerable routing challenge. Despite this, the board is only two layers which
affords much quicker and cheaper manufacturing then other processes. The 3V3
power supply is switching for high efficiency while the other lower voltages are
produced with simple linear low dropout regulators.

4.2 Kicker

The kicker circuitry charges a bank of capacitors which are then discharged
into the solenoids (both the kicker and the chipper) to kick the ball. The kicker
uses a Linear Technologies LT3750 flyback controller to convert the battery
voltage (12V) to approximately 250 volts which charges a 5400µF capacitor
bank. The capacitors are discharged into the solenoids by means of an Insulated
Gate Bipolar Transistor (IGBT). Ball speeds approaching legal limit have been
achieved. In comparison to other designs, this design is quite compact, requiring
only about three square inches of board area. This design also boasts efficiencies
exceeding 80%.

5 Conclusion

For the 2010 season, we intend to have a new fleet of robots incorporating the
lessons learned through the last design revision, as well as an improved robust
passing and control system. This should allow both significantly faster and more
competitive gameplay, as well as more reliable robots with fewer maintenance
requirements.
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