

Misti Design Presentation

www.robojackets.org

Outline

- Design Features/Innovations
 - Mechanical
 - Electrical
 - Software
- Simulation
- Questions

MECHANICAL

Organization

- Red Sensors
- Green Interface
- Blue Drivetrain
- Pink Electronics

Drivetrain

- 2 x A28-400 Ampflow Motors
 - Combined 9 peak horsepower
 - Redundant motor controllers
- Custom gearboxes
 - Total reduction 30:1

Suspension

- Stabilize sensory input over rough terrain
- Designed to exceed IGVC performance requirements
- 5" wheel travel

Safety

- Fuses on every voltage rail to isolate shorts
- Multiple remotes for wireless E-stop
- Wired E-stop at operator's forehead level

ELECTRICAL

Computers

- Main Computer
 - Intel i7 processor
 - 6GB RAM
 - USB, Firewire, Serial
- Microcontrollers

- Arduino for motor control and encoder reading
 - Custom daughter board
 - replaces previous 4 Arduinos on previous robot
- Second Arduino for ancillary systems (lights, etc).

Sensors

- Reused Sensors:
 - LIDAR
 - SICK NAV200
 - Custom USB Interface
 - GPS
 - Hemisphere A100
 - Encoder
 - US Digital E3

- New Sensors
 - Stereo Camera
 - Point Grey Bumblebee2
 - 9 DOF IMU
 - Ardupilot

Power

- Source
 - 2 x 12v deep cycle sealed lead-acid batteries
 - Total energy capacity of 1052 Watt-Hours
 - ~1 Hour of motor run time
- Distribution
 - 4 different voltage rails
 - 24v Sensors and motors
 - 12v Sensors, lights
 - 5v USB
 - 19.5v Laptop
 - Fuses on each rail
 - E-stop cuts power to motors allows other systems to continue operation

SOFTWARE

Design

- Extensive use of interfaces and inheritance
 - Ensures consistency and simplicity
 - All sensor data inherits from a common class
- Event/Listener design paradigm
 - Facilitates communication between functional units of the system
 - Allows rapid substitution of algorithms
 - Allows for the creation of sensor simulators
 - Wheels up, in-lab testing

Vision

- Extensive use of the OpenCV library
- Major Vision Algorithms
 - Lane Detection
 - Utilizes LIDAR data to remove potential distracters
 - Visual Odometry
 - Uses IMU data to provide update statements over fixed periods of time
 - Provides a means of lessening uncertainty present in GPS data

Path Planning

- A* path planning...with a twist.
 - Normal A* assumes holonomic drive.
 - Path smoothing algorithms more natural motion
 - Modified A*
 - Natural robot motions used as state changes
 - Heuristic penalizes time-inefficient decisions i.e. turning in place

Sensor Fusion

- Overlapping and possibly contradicting data from multiple sensors
- Kalman Filter
 - Additional complexity to determine appropriate parameters for each fused data type
 - Fairly simple for sensors such as GPS
 - More complex for alternative data sources such as our visual odometry algorithm

Robo leckets

Simulation

• LIDAR, Vision sensor simulator

Thank you

QUESTIONS

