

Electrical Training

Session 2

September 15, 2014

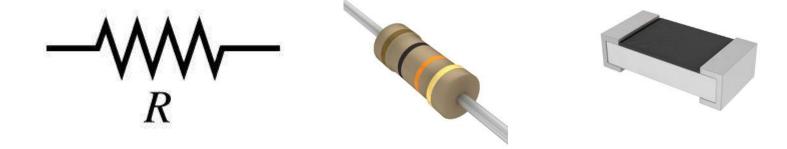
Announcements

- All teams are now meeting at the shop
 - Carpool pickup locations at CULC & Love
 - Green Route bus (last pickup @ 9:00pm)
- Attendance will be taken at all RoboJackets events starting 09/15/2014

Announcements

- Everyone should know what team of RoboJackets they wish to participate with
- Everyone should know what subteam they wish to join by the end of this week
- Is anyone not subscribed to their team's mailing list?

Outline


- Electrical circuit elements
- Motor basics (Brushed vs. Brushless)
- Exercises and preparation for next week

What is a Resistor?

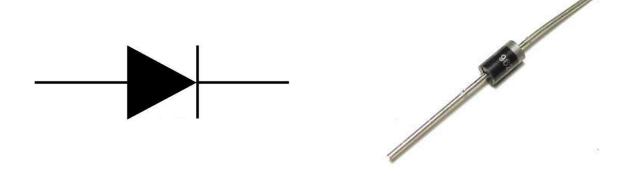
Element that inhibits the flow of electrons

What is a Capacitor?

Element that temporarily stores electrical energy

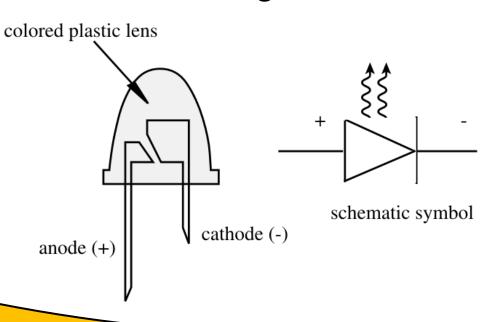
What is an Inductor?

 Element that temporarily stores energy in the form of a magnetic field among its coils



What is a Diode?

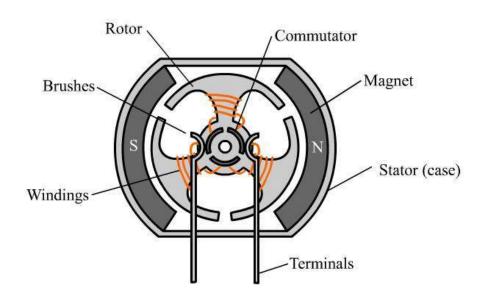
Element that limits the flow of electrons to one direction



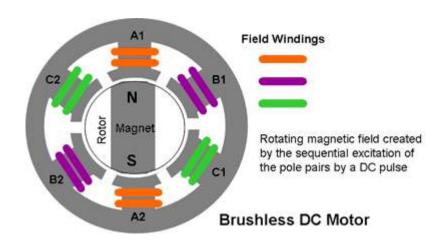
What is an LED?

Type of diode that emits light

Series vs. Parallel


Motor Control

- IGVC uses two (2) brushed DC motors
 - controlled with 2 arduinos and two Open Source Motor Controllers
- Battlebots uses similar motors to IGVC
- RoboCup uses five (5) brushless DC motors
 - o controlled by an FPGA on custom PCB board
 - o 4 drive motors, 1 dribbler motor


Brushed DC Motors

Typical Brushed Motor in Cross-section

Brushless DC Motors (BLDC)

https://www.youtube.com/watch?v=ZAY5JInyHXY

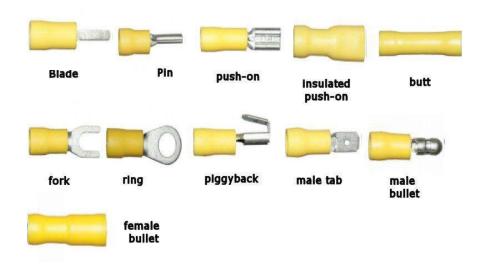
Applications of each

Brushed

- Lower cost
- Less efficient
- Shorter lifespan
- Easy to operate

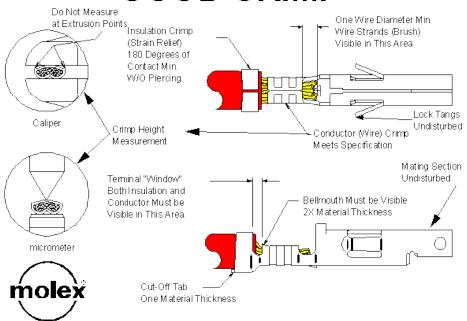
Brushless

- Higher cost
- More efficient
- Longer lifespan
- Complex to operate



Wire Crimping

Large Gauge Crimping



https://learn.sparkfun.com/tutorials/working-with-wire/how-to-crimp-an-electrical-connector

Small Gauge Crimping

GOOD CRIMP

Preparation for next week

- Watch this video on Kirchoff's Voltage Law
 - https://www.youtube.com/watch?v=JOGygS0AvQE
- There will be a exercise next week using concepts from the video. Explore further if needed - many resources online.

Next Week

- Special soldering session
 - o CCB 337 @ 6:00 PM

Resources for Learning

- IGVC's Open Source Motor Controller (OSMC)
 - http://www.robotpower.com
- RoboJackets Wiki How to Guides
 - http://wiki.robojackets.org/w/How to Guides
- Git Cheat Sheet
 - https://training.github.com/kit/downloads/github-gitcheat-sheet.pdf

