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Abstract—This document comprises Georgia Tech 

RoboRacing’s submission for the “Written Report” section 

of the IARRC 2017 competition. It describes the hardware 

and software of the robot called Macaroni (Abstract) 

I. TEAM INTRODUCTION 

RoboJackets RoboRacing, is one of several undergraduate 

robotics teams within the RoboJackets organization at Georgia 

Tech. We have redesigned most of our hardware and software 

to improve on last year’s IARRC entry.  The most notable 

improvements are the new stochastic path planner and a more 

nimble physical platform, which we have named Macaroni.  

II. MECHANICAL DESIGN 

 
Full CAD design 

In comparison to the RoboJackets robot of the 2016 

IARRC, Macaroni possess several key structural and aesthetic 

improvements. These include but are not limited to the 

addition of a lower mount plate for electronics, relocation of 

the camera and emergency stop switch as well as the redesign 

of the roll cage and polycarbonate protective sheet. the 

mechanical design aspects will be divided into 4 subsections: 

overall design/materials used, drivetrain, sensor mounts, and 

robot protection. 

A. Overall Design/Materials Used 

Although there are distinct differences between Macaroni 

and the previous robot, the fundamental build platform was kept 

the same. The bottom skeleton of Macaroni was obtained from 

a 1/10 scale Traxxas Slash 4X4 RC car. The 4 wheels, front and 

rear differential gears, servo, differential mounts, and 

suspension assemblies are among the components that were 

transferred to Macaroni. All connections and linkages that attach 

the wheels to the differential, as well as the gearing used to drive 

the differential box were also adapted to the new design. The 

majority of these parts were made out of plastic with a select few 

made out of metal. The remaining custom parts were machined 

out of aluminum (AL6061) or out of clear polycarbonate. 

There are several noticeable changes in Macaroni’s overall 

mechanical structure from its predecessor. Firstly, there is now 

a protective aluminum and plexiglass roll cage to protect the 

electronics from impacts and water splashes. Second, the chassis 

has been lowered in order to make the robot more nimble, to 

make sure the LIDAR’s plane is low enough to sense obstacles, 

and to increase the space available to mount electrical 

components. Third, the tower at the rear of last year’s car has 

been replaced with lower, lighter mounts for the camera (which 

is now mounted to the front of the roll cage) and the E-Stop 

switch (which now protrudes from the highest point of the roll 

cage). 

B. Drivetrain 

The drivetrain refers to the components which physically 

perform navigation of the vehicle. Macaroni is powered by a 

brushless DC motor. Similar to its predecessor, the drive motor 

is mounted on a 1/4in aluminum plate, approximately 7in by 2in, 

as shown in the figure to the right. This mount is located close 



to the rear differential and secured to the top and bottom plate. 

A 13-tooth gear is mounted to the spindle of the motor. This gear 

then drives a larger 54-tooth gear which is directly connected to 

the rear differential and subsequently drives two rear wheels. 

Another drive axle has been added this year, connecting the front 

and rear differentials, and completing the four-wheel-drive 

system that came with the vehicle. 

  

Above: motor mount isolated (left) and in car (right) 

Steering on Macaroni is achieved using the already existing 

servo drive and linkages available on this Traxxas model. Also 

similar to the robot used last year, this servo was mounted on the 

top mount plate of the robot. 

C. Mounts for Electrical Systems 

To improve navigation capabilities, the robot has been 

updated with new electrical equipment; the camera, LIDAR 

unit, main computer, microcontroller, and encoder each needed 

new mounts. To accommodate these, a second electrical 

mounting plate also made of aluminum now sits below the 

original one. On the lower plate the batteries, motor controller, 

and encoder are mounted, while on the top plate the LIDAR, 

Intel Joule, and other related electrical components are mounted. 

Mounting was achieved using screws and Velcro straps. The 

camera is now mounted on the top-front of the roll cage of the 

car instead of higher and farther back. This makes better use of 

the new camera’s wider field of view. Also, the mounting 

assembly was modified to provide more security and ease of 

adjustability. The new camera mount fully encases the camera 

to provide full protection from every angle. The LIDAR is 

bolted to the top plate of the front suspension assembly. For 

added protection, the LIDAR mount also includes a sheet metal 

plate made from aluminum. The plate curves back and around 

the LIDAR, balancing protection with not blocking the view of 

the sensor. Finally the emergency stop was moved to the top of 

the robot and mounted on the roll cage while maintaining the 

competition specification keeping at least the minimum distance 

from the ground. 

  

Chassis upper mount plate (left) and camera mount (right) 

D. Robot Protection 

With the increase in sensitive electronics comes the 

requirement for a more stable and robust way of protecting these 

components. The protective subassembly of this robot is 

comprised of two pairs of side panels made out of 1/2in 

aluminum (AL6061). Shown in figure x, the side panels are 

bolted to the top and bottom plate and serve to protect the robot 

from damage from both sides. The bottom side panel is equipped 

with hinges to allow easier access to the bottom plate. Also 

included as a protective surface against minor splashes and light 

rain, a layer of clear polycarbonate plastic was added to the top 

of the robot. 

  

Roll cage (left) and LIDAR protector (right) 

III. ELECTRICAL DESIGN 

The remodeled electrical system of Macaroni centers its 

design around the Intel Joule module. Motor control, including 

PID and E-Stop circuitry, is operated separately using a 

microcontroller and a radio board assembled on an external 



protoboard. Data is collected from a LIDAR, IMU, encoder, and 

camera, mounted on the robot. All on-board components are 

powered by two separate 11.1V Li-Po batteries: one to drive the 

motor and the other to power the electronics. This particular 

design was chosen as it protects the sensitive electronics and 

sensors from any electrical noise produced by the motors with 

the added protection that, should the motor stall and cause 

electrical failures, all data would be safe to better diagnose the 

problems. 

A. Component Breakdown 

Intel Joule 570x 

The Intel Joule handles all vision processing and path 

planning for the robot. Acting as the central hub for 

computation, the Joule interfaces with the on-board sensors and 

ICs using Serial, I2C, and USB communication protocols 

provided by the Intel Joule Expansion Board. We switched to 

the Joule from an Intel NUC to save weight and get access to 

lower-level communication protocols. 

USB 3.0 Hub (Amazon Basic USB 3.0 Hub) 

The USB 3.0 Hub takes in data from all of the USB devices 

(the camera, the LIDAR, and the USB drive) and channels them 

to the single USB Type A port on the Joule Expansion Board. 

USB Drive (Corsair 128GB Voyager GTX) 

The USB drive stores all the data from the sensors and stores 

it for future use. This lets our software team run virtual tests by 

playing back data from special ROS storage files.  

LIDAR (SICK TiM551)  

The LIDAR interfaces directly with the Intel Joule Module 

through a micro USB connection. The LIDAR has a range of 

0.05 m to 10 m with a statistical error of +/- 0 mm and a refresh 

rate of 15 Hz, which gives Macaroni a very clear picture of its 

2D surroundings. The sensor is powered directly by the 11.1V 

Li-Po batteries.  

Remote E-Stop (Zrabra XY-R02A) 

The Zrabra radio module, chosen for its simplicity of design 

and ease of use, is mounted onto the protoboard. It 

communicates with a two button remote that triggers two 

corresponding output pins. One pin is tied directly to the ESC 

control while the other is connected to the microcontroller in 

order to track the status of the E-Stop trigger. 

Microcontroller (ATMega328-PU) 

All motor control and tuning is handled by the ATMega328-

PU. Flashed using the Arduino bootloader, the microcontroller 

utilizes PID to adjust and maintain the target heading. The 

status of the multiplexer, E-Stop, and the current speed of the 

robot is sent to the Joule through a serial communication 

interface. 

Functional block diagram of the Electrical System 



Relay Control Board (Beefcake Relay Control) 

The Relay Control Board connects directly to one of the 

digital lines on the Zrabra radio board. This takes the lower 

voltage (5V) signal of the radio board to either allow current to 

pass to the motor or cut the circuit in the event of an E-Stop 

trigger. 

IMU (MPU-9250) 

Connected to the Joule directly through an I2C port, the 

nine-degree-of-freedom IMU reads the linear acceleration, 

angular acceleration, and orientation. The unit includes a 

gyroscope, accelerometer, and magnetometer. 

Encoder (E4T-100-250-S-H-D-B) 

We use an optical quadrature encoder with a configurable 

number of cycles per rotation. The encoder is attached directly 

to the motor drive axle, meaning a 1:1 gear ratio from the speed 

of the motor.  

Camera (Genius WideCam F100) 

The camera is a wide-angle 1080p HD webcam which 

communicates to the Joule through a USB connection through 

the USB Hub. The data collected is then used in vision 

processing on board the Joule for identifying obstacles. 

Multiplexer (Pololu 4-Channel RC Servo Multiplexer) 

The multiplexer controls whether the servo and ESC pwm 

commands that ultimately get passed on to the motor come from 

either the Joule in autonomous mode or the RC receiver when 

in manual mode. The selection pins are handled on a third 

channel from the RC receiver, allowing the manual driver to 

control whether the robot is in remote or autonomous control. 

This allows for greater flexibility during testing in order to 

determine both mechanical and software issues. 

IV. SOFTWARE DESIGN 

Our software is a distributed system that runs in several 

processes on the CPU. Each process is a node in a network 

linked by publishing and listening for data messages. This is 

made possible by ROS (Robot Operating System), which is a 

robotics-focused distributed computing platform that runs in 

Ubuntu. We chose ROS C++ over ROS Python for its 

performance. The ROS network runs on an Intel Joule, a 4-core 

compute module designed for robotics and IoT applications. 

This Joule communicates with the rest of the hardware by 

writing information over a serial port to an Arduino programmed 

in the Arduino language. When the physical robot is not 

available, we test our code on virtual circuit and drag racing 

tracks, which are simulated using Gazebo. This software 

integrates with ROS, allowing us to mock realistic sensor input 

and robot physics to see how our code behaves. This has allowed 

us to fix many bugs and even to tune parameters.  

 

 

Above: example ROS graph using our IARRC nodes, shown in 

two parts 

Several subsystems within this network of ROS nodes and 

messages turn the front-facing camera feed into a power signal 

to the motor and steering servo interfaces: obstacle detection, 

path planning, and vehicle control. 

A. Sensing: Obstacle and Stop Light Detection 

Our camera is a 1080p HD webcam that is connected via 

USB to the Joule. Using OpenCV, we identify parts of the 

image that match color criteria that we tuned to match 

obstacles. It generates an image where just these obstacles are 

highlighted, and this image is converted to a point cloud akin 

to the one a LIDAR unit would generate. Later in the pipeline, 

the planner uses this localization to determine the course of 



action. Using this process we are able to identify where the 

obstacles are and publish this information to our path planner. 

The stop light detector works by computing the change in 

pixel intensities between frames. When the light turns green, 

the part that was formerly red becomes much darker and the 

green part becomes much brighter. When the change in color 

meets a certain threshold, the node indicates to the rest of the 

system to start working. 

 

Processed image with IARRC track lines highlighted 

B. Path Planning and Collision Avoidance 

We use a stochastic path planner to extract a good route 

through the detected environment. First, random samples are 

taken from a normal distribution centered at zero. These values 

are interpreted as potential steering angles, which the planner 

uses to project the motion of the car through the most recent 

point cloud. We use an Ackermann steering model and assume 

perfect traction. Instead of projecting the path using one steering 

angle for a certain length of time, our planner can break the 

projected path into an arbitrary number of segments, each with 

a different steering angle (we have found that using two path 

segments to provides optimal behavior). The robot’s speed at 

each point in the path is determined directly from steering angle: 

at maximum turning, the speed is set to one tenth of its straight-

line value. 

Once the many random paths have been extrapolated, each 

is assigned a cost as a path integral of position costs. Each 

position’s cost is calculated using the inverse of the distance to 

the nearest detected obstacle and the vehicle’s speed. The paths 

with the lowest cost are those that balance fast (i.e. straight) 

trajectories with maximal distance from obstacles. To efficiently 

find the closest obstacle in the point cloud, we use FLANN (Fast 

Library for Approximating Nearest Neighbors) to run an 

efficient nearest-neighbors search.  

Once all costs have been calculated, those not close enough 

to the best cost are filtered out. The remaining costs are clustered 

using our own implementation of the DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise) algorithm. In 

order to be clustered, the paths are encoded spatially using the 

different steering values along the path. The cluster of paths with 

the lowest average cost is chosen, and the average of all first 

steering samples in these paths is used to set the robot’s target 

speed and angle. 

This planner has shown very good results at navigating 

quickly through tight spaces formed by static obstacles. The 

emphasis on speed in the cost calculation means that even with 

plenty of space, the robot will try to clip the apex of the corner 

as if it had planned a racing line. The algorithm does not make 

special affordances for moving obstacles; it will not drive behind 

another vehicle, as it expects to hit it. 

  

Path planning in Gazebo. The pink line represents the path. 

C. Vehicle Control 

After the path planner determines an optimal steering heading 

and speed, this information is written over serial to an Arduino. 

The Arduino reads the state of the E-Stop and servo 

multiplexer. If the E-Stop is not activated and the multiplexer 

is set to automatic control, the Arduino will compute the 

appropriate motor PWM given the heading and speed. This is 

done using a PID controller where error is computed in terms 

of speed. The PID constants were tuned by first finding a P 

constant that approaches our setpoint asymptotically and then a 

D constant that reached the ideal speed. This PID controller is 

a surface agnostic feedback loop, meaning that its only 

parameters are a setpoint, a current speed, and PID constants. 



As a result, we can do high speed acceleration and braking 

regardless of the surface. The Arduino is consistently writing 

back information gathered from the encoder as well as the state 

of the multiplexer over a serial communication to the Joule. 

 

This concludes the written report for RoboJackets 

RoboRacing.

 


