
Georgia Tech RoboRacing “Macaroni” Design Report

Evan Bretl Ransomed Adebayo Ryan Waldheim Sahit Chintalapudi

Abstract—This document comprises Georgia Tech

RoboRacing’s submission for the “Written Report” section

of the IARRC 2017 competition. It describes the hardware

and software of the robot called Macaroni (Abstract)

I. TEAM INTRODUCTION

RoboJackets RoboRacing, is one of several undergraduate

robotics teams within the RoboJackets organization at Georgia

Tech. We have redesigned most of our hardware and software

to improve on last year’s IARRC entry. The most notable

improvements are the new stochastic path planner and a more

nimble physical platform, which we have named Macaroni.

II. MECHANICAL DESIGN

Full CAD design

In comparison to the RoboJackets robot of the 2016

IARRC, Macaroni possess several key structural and aesthetic

improvements. These include but are not limited to the

addition of a lower mount plate for electronics, relocation of

the camera and emergency stop switch as well as the redesign

of the roll cage and polycarbonate protective sheet. the

mechanical design aspects will be divided into 4 subsections:

overall design/materials used, drivetrain, sensor mounts, and

robot protection.

A. Overall Design/Materials Used

Although there are distinct differences between Macaroni

and the previous robot, the fundamental build platform was kept

the same. The bottom skeleton of Macaroni was obtained from

a 1/10 scale Traxxas Slash 4X4 RC car. The 4 wheels, front and

rear differential gears, servo, differential mounts, and

suspension assemblies are among the components that were

transferred to Macaroni. All connections and linkages that attach

the wheels to the differential, as well as the gearing used to drive

the differential box were also adapted to the new design. The

majority of these parts were made out of plastic with a select few

made out of metal. The remaining custom parts were machined

out of aluminum (AL6061) or out of clear polycarbonate.

There are several noticeable changes in Macaroni’s overall

mechanical structure from its predecessor. Firstly, there is now

a protective aluminum and plexiglass roll cage to protect the

electronics from impacts and water splashes. Second, the chassis

has been lowered in order to make the robot more nimble, to

make sure the LIDAR’s plane is low enough to sense obstacles,

and to increase the space available to mount electrical

components. Third, the tower at the rear of last year’s car has

been replaced with lower, lighter mounts for the camera (which

is now mounted to the front of the roll cage) and the E-Stop

switch (which now protrudes from the highest point of the roll

cage).

B. Drivetrain

The drivetrain refers to the components which physically

perform navigation of the vehicle. Macaroni is powered by a

brushless DC motor. Similar to its predecessor, the drive motor

is mounted on a 1/4in aluminum plate, approximately 7in by 2in,

as shown in the figure to the right. This mount is located close

to the rear differential and secured to the top and bottom plate.

A 13-tooth gear is mounted to the spindle of the motor. This gear

then drives a larger 54-tooth gear which is directly connected to

the rear differential and subsequently drives two rear wheels.

Another drive axle has been added this year, connecting the front

and rear differentials, and completing the four-wheel-drive

system that came with the vehicle.

Above: motor mount isolated (left) and in car (right)

Steering on Macaroni is achieved using the already existing

servo drive and linkages available on this Traxxas model. Also

similar to the robot used last year, this servo was mounted on the

top mount plate of the robot.

C. Mounts for Electrical Systems

To improve navigation capabilities, the robot has been

updated with new electrical equipment; the camera, LIDAR

unit, main computer, microcontroller, and encoder each needed

new mounts. To accommodate these, a second electrical

mounting plate also made of aluminum now sits below the

original one. On the lower plate the batteries, motor controller,

and encoder are mounted, while on the top plate the LIDAR,

Intel Joule, and other related electrical components are mounted.

Mounting was achieved using screws and Velcro straps. The

camera is now mounted on the top-front of the roll cage of the

car instead of higher and farther back. This makes better use of

the new camera’s wider field of view. Also, the mounting

assembly was modified to provide more security and ease of

adjustability. The new camera mount fully encases the camera

to provide full protection from every angle. The LIDAR is

bolted to the top plate of the front suspension assembly. For

added protection, the LIDAR mount also includes a sheet metal

plate made from aluminum. The plate curves back and around

the LIDAR, balancing protection with not blocking the view of

the sensor. Finally the emergency stop was moved to the top of

the robot and mounted on the roll cage while maintaining the

competition specification keeping at least the minimum distance

from the ground.

Chassis upper mount plate (left) and camera mount (right)

D. Robot Protection

With the increase in sensitive electronics comes the

requirement for a more stable and robust way of protecting these

components. The protective subassembly of this robot is

comprised of two pairs of side panels made out of 1/2in

aluminum (AL6061). Shown in figure x, the side panels are

bolted to the top and bottom plate and serve to protect the robot

from damage from both sides. The bottom side panel is equipped

with hinges to allow easier access to the bottom plate. Also

included as a protective surface against minor splashes and light

rain, a layer of clear polycarbonate plastic was added to the top

of the robot.

Roll cage (left) and LIDAR protector (right)

III. ELECTRICAL DESIGN

The remodeled electrical system of Macaroni centers its

design around the Intel Joule module. Motor control, including

PID and E-Stop circuitry, is operated separately using a

microcontroller and a radio board assembled on an external

protoboard. Data is collected from a LIDAR, IMU, encoder, and

camera, mounted on the robot. All on-board components are

powered by two separate 11.1V Li-Po batteries: one to drive the

motor and the other to power the electronics. This particular

design was chosen as it protects the sensitive electronics and

sensors from any electrical noise produced by the motors with

the added protection that, should the motor stall and cause

electrical failures, all data would be safe to better diagnose the

problems.

A. Component Breakdown

Intel Joule 570x

The Intel Joule handles all vision processing and path

planning for the robot. Acting as the central hub for

computation, the Joule interfaces with the on-board sensors and

ICs using Serial, I2C, and USB communication protocols

provided by the Intel Joule Expansion Board. We switched to

the Joule from an Intel NUC to save weight and get access to

lower-level communication protocols.

USB 3.0 Hub (Amazon Basic USB 3.0 Hub)

The USB 3.0 Hub takes in data from all of the USB devices

(the camera, the LIDAR, and the USB drive) and channels them

to the single USB Type A port on the Joule Expansion Board.

USB Drive (Corsair 128GB Voyager GTX)

The USB drive stores all the data from the sensors and stores

it for future use. This lets our software team run virtual tests by

playing back data from special ROS storage files.

LIDAR (SICK TiM551)

The LIDAR interfaces directly with the Intel Joule Module

through a micro USB connection. The LIDAR has a range of

0.05 m to 10 m with a statistical error of +/- 0 mm and a refresh

rate of 15 Hz, which gives Macaroni a very clear picture of its

2D surroundings. The sensor is powered directly by the 11.1V

Li-Po batteries.

Remote E-Stop (Zrabra XY-R02A)

The Zrabra radio module, chosen for its simplicity of design

and ease of use, is mounted onto the protoboard. It

communicates with a two button remote that triggers two

corresponding output pins. One pin is tied directly to the ESC

control while the other is connected to the microcontroller in

order to track the status of the E-Stop trigger.

Microcontroller (ATMega328-PU)

All motor control and tuning is handled by the ATMega328-

PU. Flashed using the Arduino bootloader, the microcontroller

utilizes PID to adjust and maintain the target heading. The

status of the multiplexer, E-Stop, and the current speed of the

robot is sent to the Joule through a serial communication

interface.

Functional block diagram of the Electrical System

Relay Control Board (Beefcake Relay Control)

The Relay Control Board connects directly to one of the

digital lines on the Zrabra radio board. This takes the lower

voltage (5V) signal of the radio board to either allow current to

pass to the motor or cut the circuit in the event of an E-Stop

trigger.

IMU (MPU-9250)

Connected to the Joule directly through an I2C port, the

nine-degree-of-freedom IMU reads the linear acceleration,

angular acceleration, and orientation. The unit includes a

gyroscope, accelerometer, and magnetometer.

Encoder (E4T-100-250-S-H-D-B)

We use an optical quadrature encoder with a configurable

number of cycles per rotation. The encoder is attached directly

to the motor drive axle, meaning a 1:1 gear ratio from the speed

of the motor.

Camera (Genius WideCam F100)

The camera is a wide-angle 1080p HD webcam which

communicates to the Joule through a USB connection through

the USB Hub. The data collected is then used in vision

processing on board the Joule for identifying obstacles.

Multiplexer (Pololu 4-Channel RC Servo Multiplexer)

The multiplexer controls whether the servo and ESC pwm

commands that ultimately get passed on to the motor come from

either the Joule in autonomous mode or the RC receiver when

in manual mode. The selection pins are handled on a third

channel from the RC receiver, allowing the manual driver to

control whether the robot is in remote or autonomous control.

This allows for greater flexibility during testing in order to

determine both mechanical and software issues.

IV. SOFTWARE DESIGN

Our software is a distributed system that runs in several

processes on the CPU. Each process is a node in a network

linked by publishing and listening for data messages. This is

made possible by ROS (Robot Operating System), which is a

robotics-focused distributed computing platform that runs in

Ubuntu. We chose ROS C++ over ROS Python for its

performance. The ROS network runs on an Intel Joule, a 4-core

compute module designed for robotics and IoT applications.

This Joule communicates with the rest of the hardware by

writing information over a serial port to an Arduino programmed

in the Arduino language. When the physical robot is not

available, we test our code on virtual circuit and drag racing

tracks, which are simulated using Gazebo. This software

integrates with ROS, allowing us to mock realistic sensor input

and robot physics to see how our code behaves. This has allowed

us to fix many bugs and even to tune parameters.

Above: example ROS graph using our IARRC nodes, shown in

two parts

Several subsystems within this network of ROS nodes and

messages turn the front-facing camera feed into a power signal

to the motor and steering servo interfaces: obstacle detection,

path planning, and vehicle control.

A. Sensing: Obstacle and Stop Light Detection

Our camera is a 1080p HD webcam that is connected via

USB to the Joule. Using OpenCV, we identify parts of the

image that match color criteria that we tuned to match

obstacles. It generates an image where just these obstacles are

highlighted, and this image is converted to a point cloud akin

to the one a LIDAR unit would generate. Later in the pipeline,

the planner uses this localization to determine the course of

action. Using this process we are able to identify where the

obstacles are and publish this information to our path planner.

The stop light detector works by computing the change in

pixel intensities between frames. When the light turns green,

the part that was formerly red becomes much darker and the

green part becomes much brighter. When the change in color

meets a certain threshold, the node indicates to the rest of the

system to start working.

Processed image with IARRC track lines highlighted

B. Path Planning and Collision Avoidance

We use a stochastic path planner to extract a good route

through the detected environment. First, random samples are

taken from a normal distribution centered at zero. These values

are interpreted as potential steering angles, which the planner

uses to project the motion of the car through the most recent

point cloud. We use an Ackermann steering model and assume

perfect traction. Instead of projecting the path using one steering

angle for a certain length of time, our planner can break the

projected path into an arbitrary number of segments, each with

a different steering angle (we have found that using two path

segments to provides optimal behavior). The robot’s speed at

each point in the path is determined directly from steering angle:

at maximum turning, the speed is set to one tenth of its straight-

line value.

Once the many random paths have been extrapolated, each

is assigned a cost as a path integral of position costs. Each

position’s cost is calculated using the inverse of the distance to

the nearest detected obstacle and the vehicle’s speed. The paths

with the lowest cost are those that balance fast (i.e. straight)

trajectories with maximal distance from obstacles. To efficiently

find the closest obstacle in the point cloud, we use FLANN (Fast

Library for Approximating Nearest Neighbors) to run an

efficient nearest-neighbors search.

Once all costs have been calculated, those not close enough

to the best cost are filtered out. The remaining costs are clustered

using our own implementation of the DBSCAN (Density-Based

Spatial Clustering of Applications with Noise) algorithm. In

order to be clustered, the paths are encoded spatially using the

different steering values along the path. The cluster of paths with

the lowest average cost is chosen, and the average of all first

steering samples in these paths is used to set the robot’s target

speed and angle.

This planner has shown very good results at navigating

quickly through tight spaces formed by static obstacles. The

emphasis on speed in the cost calculation means that even with

plenty of space, the robot will try to clip the apex of the corner

as if it had planned a racing line. The algorithm does not make

special affordances for moving obstacles; it will not drive behind

another vehicle, as it expects to hit it.

Path planning in Gazebo. The pink line represents the path.

C. Vehicle Control

After the path planner determines an optimal steering heading

and speed, this information is written over serial to an Arduino.

The Arduino reads the state of the E-Stop and servo

multiplexer. If the E-Stop is not activated and the multiplexer

is set to automatic control, the Arduino will compute the

appropriate motor PWM given the heading and speed. This is

done using a PID controller where error is computed in terms

of speed. The PID constants were tuned by first finding a P

constant that approaches our setpoint asymptotically and then a

D constant that reached the ideal speed. This PID controller is

a surface agnostic feedback loop, meaning that its only

parameters are a setpoint, a current speed, and PID constants.

As a result, we can do high speed acceleration and braking

regardless of the surface. The Arduino is consistently writing

back information gathered from the encoder as well as the state

of the multiplexer over a serial communication to the Joule.

This concludes the written report for RoboJackets

RoboRacing.

