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1. Introduction and Team Organization 

The primary goal of the Georgia Tech Robojackets' Intelligent Ground Vehicle 

Competition (IGVC) team for the 2005 – 2006 year was reorganization.  Having lost upper 

classman to graduation, the team's focus shifted from implementing the most advanced 

technology to educating the new team members in fields required to excel at IGVC.  Instead of a 

strict hierarchy of command, the Georgia Tech IGVC team experimented with allowing each 

member to work a broad range of tasks.  Figure 1 below provides information about each team 

member.  

 

Figure 1 also demonstrates the involvement of each team member in a number of tasks.  Each 

member spent, on average, 400 man hours planning, designing, and implementing the project.   

      



 In order to make team communication and knowledge distribution as available as 

possible, a wiki server was implemented using the Wikimedia Foundation Inc. software made 

famous by websites such as www.wikipedia.org.  The wiki encouraged the team to link each 

other to information, create an online guide to all of the vehicle's designs, and keep good 

documentation of the project.  Figure 2 shows the root webpage of the Robojackets IGVC wiki. 

 

This method of documentation and communication was so successful that it was eventually 

adopted by the entirety of the Robojackets organization. 

2. Design Specifications 

 2.1. Autonomous Challenge Description 

 For the autonomous robot challenge, an unmanned ground vehicle must navigate an 

outdoor obstacle course of white lines, orange barrels, sand traps, potholes, or simulations of 

      



such objects.  The course is approximately 600 – 800 feet in length with a minimum width of six 

feet between obstacles and white lines.  Furthermore, white lines may be solid or dashed.  A 

variety of weather and lighting conditions is expected.  Terrain consists mostly of grass and 

pavement with inclines of no more than 15%.   

 2.2. Technical Limits 

 All control, sensing, and power systems must be local to the vehicle.  No external control 

is allowed.  Power systems may consist of electric batteries or internal combustion.   

 The vehicle's maximum height, length, and width may be six feet, nine feet, and five feet.  

Furthermore, the vehicle may not have a length less than three feet.  Space for a 20 pound 

payload of dimensions 18" x 8" x 8" is also required; the payload must be forward-facing.   

 2.3. Safety Specifications 

 A hardware based emergency stop (E-Stop) button must be located on the center rear of 

the vehicle, be at least two feet but not more than four feet from the ground, colored red, and at 

least one inch in diameter.  The E-Stop button must be hardware based.  Furthermore, a wireless 

E-Stop should be implemented with a range of at least 50 feet.   

 Vehicle speed may not exceed five miles per hour.  Also, if the E stop is triggered, the 

vehicle should not move more than six feet on a 15 feet incline before coming to a halt. 

 3. Vehicle Design  

 Design of the Georgia Tech IGVC vehicle was not consolidated into a period separated 

from actual implementation.  At the onset of the competition design and build period, the new 

team members met weekly to collect and study the "legacy system" left from previous Georgia 

Tech IGVC attempts.  Once a firm understanding of previous systems was attained, new systems 

were developed using a selection of old devices.  Approximately as much time was spent 

      



learning about items such as data protocols, software libraries, and computer aided design (CAD) 

as was spent actually designing new systems.  However, this method yielded interesting, 

innovative results.  

 3.1. Mechanical 

 The guiding principal behind mechanical design was to simplify the drive base as much 

as possible.  To accomplish this goal, the vehicle was designed to use a two motor differential 

drive system.  Electric motors and their respective gearboxes were connected directly to two 

wheels mounted at the front of the vehicle's chassis.  Two non-powered wheels (casters) were 

attached at the back of the vehicle to enable simple, easy turning of the vehicle.   

 To carry all electrical data and power modules, a 3' x 2' metal box was fabricated and 

bolted to the chassis.  A simple box was chosen primarily for its ease of fabrication and space 

efficiency.  Also, easy access of electrical components and the laptop were factors in this design.  

 3.2. Electrical 

  3.2.1. Data 

The electrical system was designed to be modular, independent, and upgradeable.  

Therefore, rather than purchasing a standard hobbyist robot controller, a laptop was selected to 

act as the primary processor of the system.  A generic laptop was selected with the following 

specifications of interest: a Pentium IV 2.4 GHz processor, standard serial and parallel ports, an 

IEEE 1394 port, and two USB 2.0 ports.  Debian Linux kernel v.2.6.8.1 with a KDE v.3.5 

desktop environment was installed to allow for easy manipulation of the laptop's I/O systems.  

 The laptop's plentiful I/O ports allowed for easy connection of all sensors.  Off-the-shelf 

components were selected when possible for their reliability and time saving benefits.  A 

consumer grade JVC digital camcorder with an IEEE 1394 port was selected for computer vision 

      



sensing, as digital camcorders are preconfigured to work well in a variety of lighting and 

environmental conditions.  A SiRF III GPS Evaluation Board with RS-232 was chosen with this 

same philosophy of quick, reliable implementation.  These off-the-shelf modules were connected 

to the laptop's IEEE 1394 and serial ports, respectively.    

 Although off-the-shelf components were valued in this project, a great need was seen for 

giving some modules the ability to interface with each other independent of the laptop.  Thus, 

several custom modules were designed that use the controller area network (CAN) protocol.  The 

CAN protocol was selected because, unlike common protocols such as I2C, it does not use a 

master/slave system; instead, each module's message is prioritized based on which module is 

trying to communicate.  A CAN interface module was designed to allow the laptop to 

communicate with the bus through the laptop's parallel port; in addition, interfacing modules 

were created for joysticks, motor drivers, and sonar (it was later decided that sonar would not be 

used at this time, however).  

 The design of the CAN interfacing modules centered on making unlike devices 

communicate seamlessly with any other device on the bus.  Therefore, all interfacing modules 

were very similar; a Microchip CAN transceiver was placed at the front of the CAN bus on each 

module which connects to a Microchip CAN controller.  The CAN controller was chosen 

because it abstracts nearly the entire CAN protocol, allowing designers with a minimal 

knowledge of CAN to use a serial peripheral interface (SPI) for bus communication.  Connected 

to the SPI interface on the CAN controller IC was an AVR ATTINY8 MCU.   

The onboard MCU was implemented to manage the specific I/O of each device.  For 

instance, the joystick module's MCU was connected directly to the data, command, clock, and 

acknowledge bits of a standard Playstation 2 controller.  Conversely, the motor driver module 

      



was enabled to provide commands to motor drivers and take in data from a remote E-Stop 

switch, an autonomous/manual switch, and a reset switch.  

All schematics and board layouts were generated by the CAD software Eagle.  Once the 

boards were fabricated, they were built into separate boxes.  Each box module interface was then 

connected to a different module and then to the CAN bus.  These custom board designs were 

designed to require only small changes to allow a broad range of devices a standard means of 

communication.   

In this year's design, for instance, the joystick controls the motors independently of the 

laptop.  For an example of schematic and board layouts generated by Eagle, please see Appendix 

A.  A graphical representation of all data module connections is depicted in Figure 3. 

 

      



As shown by Figure 3, the laptop provides central processing for certain modules while others 

may operate more independently.  However, future designs may enable GPS or the camcorder to 

communicate with the joystick or motor driver directly. 

3.2.2. Power and Motor Drive 

 Two 12V sealed lead-acid batteries were placed in series to provide 24V.  Power was 

then divided into sections, motor drive and data.  One 24V Vantec motor driver was used to 

control both motors in the differential driving system.  Power to the motor driver was switched 

by a contactor relay.  The required "Big Red Button" E-Stop was positioned in the signal line of 

the contactor relay so that depressing the button cuts power to the motor driver.  However, the 

remote E-Stop caused hardware in the motor driver's CAN interface to cease transmitting drive 

signals. Conversely, power to the data systems was forced to specific voltages by a custom 

designed power supply board.  The board was designed to provide 11V for the JVC camcorder, 

20V for the laptop, and 12V for other data modules.  

 To aid in visualizing the power connections, refer Appendix B for a block diagram of 

power distribution. 

3.3. Algorithms 

Computer vision was chosen as the primary means of sensing the environment.  Several 

algorithms were developed to process the camera's raw line and barrel data into usable 

information; using this information, a navigation algorithm was developed to find a safe path 

through the image plane.   

 3.3.1. White and Orange Pixel Identification 

 Creation of a simple, relatively robust color identifier was the first stage of the vision 

design process.  One of the most desirable traits of a color identifier was determined to be its 

      



ability to accurately detect colors of objects of interest.  The chief problem was creating a system 

with enough flexibility to allow for different lighting conditions while still detecting only the 

desired objects. 

 Orange pixel detection was simple to design.  First, a red green blue (RGB) color space 

containing data of interest was loaded.  Then, the green sample of the color space was subtracted 

from the red sample.  The resulting data represented a measure of the orange intensity of any 

given subset (pixel) of the color space.  Since IGVC obstacles were determined to be of a very 

high orange intensity, pixels were then compared against an experimentally-determined 

threshold.  Pixels that had orange intensity values greater than the designated threshold were then 

passed to the barrel detection algorithm; pixels failing to meet this criterion were discarded. 

    White pixel detection required more processing to ensure accurate detection.  White 

was determined to be too difficult to process by only thresholding high intensity values in the 

RGB color space.  It was noted from experiment with the camera that many high intensity 

subsets of the image space appeared very close to white.  In order to solve this problem, 

conversion to a hue saturation brightness (HSB) color space before processing was proposed.  By 

converting the input image to HSB, intensity values of saturation (purity of the color) and 

brightness (intensity of the color) could be assessed.  The measure of saturation was especially 

important, as a great deal of the uninteresting white data in images appeared somewhat grayed by 

mixing with other intense colors.  Pixels values with saturation less than a certain threshold and 

brightness above a certain threshold were then considered line or pothole objects.  

 3.3.2. Barrel Detection 

 Once pixel data was processed, the next step was to detect barrels in the image.  The 

designed algorithm iterated through each row of the image space starting in the bottom left 

      



corner.  If a certain amount of orange pixels was detected in a row (this value depended on how 

far the row was from the top of the image), then the first pixel in that row that registered orange 

was considered the bottom left of a barrel.  Next, the horizontal interval of the orange pixel array 

was recorded.  The algorithm then proceeded to scan the rows above the bottom until a specified 

percentage of white and orange striped had been found.  Barrel data was then passed to the 

navigation code for final processing.   

Figure 4 demonstrates the effectiveness of the barrel finding algorithm.   

 

The yellow lines pictured in Figure 4 represent the outer bounds of the barrel data.   

 3.3.3. Danger Map Navigation 

 With a satisfactory amount of environmental data collected, the final step towards 

designing the vision system was to develop a navigational algorithm.  In designing such an 

algorithm, three items were pursued: a danger map that could quantify "danger" along a given 

path, a system that could be adjusted quickly by changing a few parameters, and the ability to 

convert paths easily into drive commands.   

      



 In order to satisfy the first design item, a path system was developed.  Many paths were 

generated at different angle intervals from each other; each path traverses image space from its 

origin in the bottom center of the image.  Each path crossed different numbers of white pixels 

and barrel objects.  Every time each path crossed an object of interest, a counter was 

incremented.  At the algorithm's conclusion, the path with the fewest number of danger crossings 

was selected to be the vehicle's path. 

 This algorithm satisfied the second design specification as well.  The system required no 

hard coding; conversely, all the system required as input was a starting angle, a stopping angle, 

and the number of paths for the system to use.  This encapsulation allowed for easy 

experimentation with the best number of parameters rather than redesigning the algorithm to fit 

experimental data.   

 The third design specification was also satisfied.  Each path could be characterized by 

two parameters – the danger value and the path's angle.  By outputting the angle of the path with 

the lowest danger value, the system could read the angle of the path and determine proper left 

and right motor speeds to cause the vehicle to turn to that angle.  The entire algorithm was 

constantly run to ensure that the vehicle constantly favored an open path. 

 

  

 

 

 

 

 

      



Figure 5 shows a test of the navigation path algorithm. 

Figure 5. Preliminary tests of the navigation path algorithm.

 

Note that a darker color indicates a higher value of danger. 

 3.4. Software 

 Software was designed in three categories: hardware, control, and graphical user interface 

(GUI).  With the exception of firmware written for the custom CAN interface modules, all code 

was written for the laptop to interface with, command, and display data from the sensors.  C++ 

was the choice language for programming the laptop; C was chosen to create module firmware.   

 First, hardware code was written to prepare the laptop's I/O for the purpose of acting as a 

robot controller.  By using Debian Linux, the only software design required for general I/O was 

to create code that input and interpreted data directly from Linux device libraries.  Specifically 

for digital video, the Linux digital video library Kino was used to simplify and optimize intake 

      



from the IEEE 1394 port.  Software was also created to interface with the CAN bus via an SPI 

connection through the laptop's parallel port.   

 Once I/O was established on the laptop, a control thread was created.  The control 

thread's purpose was to process all data from sensors, implement the algorithms discussed in 

section 3.3., and to send drive commands to the CAN bus. Furthermore, basic GPS interpretation 

code was written into the control thread for future use. 

 To encapsulate all of the processes on the laptop, a GUI was written using the QT C++ 

graphics library.  The interface was designed to allow vehicle operators a rapid method for 

getting updates about the vehicle's status, changing parameters between course attempts, and 

running diagnostics.  Figure 6 demonstrates the "main" screen of the GUI.   

Figure 6. The default page of the vehicle control GUI.
 

 

 

 

      



4. Predicted Performance 

 The vehicle's performance is still under heavy evaluation at the writing of this paper.  

However, predictions on performance can be made.  The vehicle's top speed approaches five 

mph.  Ramp climbing ability is very possible mechanically; also, the navigation algorithm 

performs well with the solid white lines of the ramps. System reaction times can be adjusted 

precisely by changing the sampling rate of the navigation algorithms.  Battery life, with motors 

constantly running under the load of the vehicle, lasts approximately six hours.   

 At competition, the vehicle is expected to navigate the course if the bounding lines 

remain visible.  Based on camera tilt, the vehicle can see objects of interest at a distance of 

approximately four meters.  The vehicle should be able to avoid traps and dead ends, as its 

navigation algorithm can search "deep" into the image plane to find truly clear paths.  Objects 

such as potholes are treated as lines and should be avoided.  GPS navigation most likely will not 

be ready for competition, however.   

 A few trial runs have shown that the vehicle is capable of finding its way between and 

around barrels.  It relies heavily on the bounding lines to keep it on track, however.  Preliminary 

results have been encouraging, but further testing is required for certainty.   

 

 

 

 

 

 

      



5. Cost of Project 

        
Table 1. Estimate of project costs 

  Item Cost   
  Camera $450.00    
  GPS $120.00    
  Chassis $600.00    
  Batteries $600.00    

  
Motor 

Drivers $200.00    

  
CAN 

Modules $300.00    
  Laptop $1,000.00   

  Total $3,270.00   
      

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      



 
COURSE EQUIVALENCY 
 
I, ___________________________, certify that the engineering design in the vehicle (original or 
changes) by the current student team has been significant and equivalent to what might be 
awarded credit in a senior design course. 
 
Professor:__________________________ Date:_____________________ 



 
 
 
 
 
 
 
 
 
 
 
 

 
Appendix A: Example CAN Schematic and Board Layout 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      



Legend
U1. CAN Transceiver
U2. CAN Controller
U3. Microcontroller

U4. Crystal Oscillator
U5. 5V Regulator IC

Figure A1. Example EAGLE schematic and board layout using the joystick CAN interface. 
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Appendix B: Power Distribution Block Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      



 
 
 
 

 
 

 
 

      


