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Abstract correlations among those submaps, hence are quadratic but
with a much reduced constant factdr, 7; 22; 23. Others re-
strict the update exclusively to local majd<], hence operate

in constant time (assuming known data association).

A second group of researchers has developed techniques
that represent maps through potential functions between ad
jacent landmarks, similar to Markov random fields. The re-
sulting representations require memory linear in the nurobe
landmarkd19; 23. Under appropriate approximations, such
techniques have been shown to provide constant time updat-
ing (again for known data association). Unfortunately, an-c
i vergence proof exists for any of these extensions of the EKF,
1 Introduction even for the generic case of linear SLAM. Furthermore, itlkan

Simultaneous localization and mapping (SLAM) is a highlymarks are ambiguous, all of these approaches have to perform

active research area in robotics and Al. The SLAM problergearch to find appropriate data association hypothesesgadd

arises when a moving vehicle (e.g. a mobile robot, submarin@ logarithmic factor to their update complexity.

or drone) simultaneously estimates a map of its environment The FastSLAM algorithm, proposed [d5] as an efficient

and its pose relative to that map. In the absence of global papproach to SLAM based on particle filterif, does not fall

sition information, the vehicle’s pose estimate will beeim-  into either of the categories above. FastSLAM takes advan-

creasingly inaccurate, as will its map. Since maps may cotage of an important characteristic of the SLAM problem (wit

tain thousands of entities, acquiring large, accurate nigps known data association): landmark estimates are conaition

a challenging statistical estimation problem, especiafyen independent given the robot's pdtti]. FastSLAM uses a par-

performed in real-time. ticle filter to sample over robot paths. Each particle posses
Most present-day research on SLAM originates from a senV low-dimensional EKFs, one for each of thé landmarks.

inal paper by Smith and Cheesen{&1], which proposed the This representation requirés N M) memory, whereV/ is the

use of the extended Kalman filter (EKF) for solving SLAM.number of particles in the particle filter. Updating thisefiit

This paper is based on the insights that errors in the map argfuiresO(M log N) time, with or without knowledge of the

pose errors are naturally correlated, and that the covesiara-  data associations. However, the number of partitieseeded

trix maintained by the EKF expresses such correlations.-Newor convergence is unknown and has been suspected to be ex-

mann[18] recently proved that the EKF converges for lineaponential in the size of the map, in the worst-case.

SLAM problems, where the motion model and observation This paper proposes an improved version of the FastSLAM

model are linear functions with Gaussian noise (see below). algorithm. The modification is conceptually simple: When
Unfortunately, EKF covariance matrices are quadratic @ thproposing a new robot pose—an essential step in FastSLAM’s

size of the map, and updating them requires time quadratic jrarticle filter—our proposal distribution relies not onlg the

the number of landmark8/. This quadratic complexity has motion estimate (as is the case in FastSLAM), but also on the

long been recognized to be a major obstacle in scaling SLANMOSt recent sensor measurement. Such an approach is less

algorithms to maps with more than a few hundred features. Wasteful with its samples than the original FastSLAM algo-

also limits the applicability of SLAM algorithms to problem rithm, especially in situations where the noise in motiomigh

with ambiguous landmarks, which inducedata association ~ relative to the measurement noise.

problem [2; 22. Today’s most robust algorithms for SLAM  To obtain a suitable proposal distribution, our algorittim |

with unknown data association maintain multiple hypotkesesarizes the motion and the measurement model in the same

(tracks), which increase their computational complexity. manner as the EKF. As a result, the proposal distributiorbean
Consequently, there has been a flurry on research on maralculated in closed form. This extension parallels priorkv

efficient SLAM techniques (see e.d11]). One group of by Doucet and colleagues, who proposed a similar modifica-

researchers has developed techniques that recursivetjedivtion for general particle filter$6] and Markov Chain Monte

maps into submaps, thereby confining most computation @arlo techniques for neural network4]. It is similar to the

small regions. Some of these approaches still maintainadjlobarc reversal technique proposed for particle filters applee

In [15], Montemerlo et al. proposed an algorithm called
FastSLAM as an efficient and robust solution to the simul-
taneous localization and mapping problem. This paper de-
scribes a modified version of FastSLAM that overcomes
important deficiencies of the original algorithm. We prove
convergence of this new algorithm for linear SLAM prob-
lems and provide real-world experimental results that il-
lustrate an order of magnitude improvement in accuracy
over the original FastSLAM algorithm.



Bayes network$10], and it is similar to recent work by van of each other (hence the product owdr In practice, of course,
der Merwe[24], who uses an unscented filtering s{@b for one does not know the vehicle’s path. Nevertheless, the inde
generating proposal distributions that accommodate th& mependence makes it possible to factor the posterior intora ter
surement. that estimates the probability of each path, ahderms that
While this modification is conceptually simple, it has impor estimate the position of the landmarks, conditioned on each
tant ramifications. A key contribution of this paperis a cenv (hypothetical) path.
gence proof for linear SLAM problems using a single particle FastSLAM samples the path using a particle filter. Each
The resulting algorithm requires constant updating time. Tparticle has attached its own map, consisting\oextended
our knowledge, the best previous SLAM algorithm for whichkalman filters. Formally, then-th particle ng] contains a
cr?nvergence Wgs shown requires (?luaﬂratic update time. Fb'éth stlml along with N Gaussian landmark estimates, de-
thermore, we observe experimentally that our new FastSLAM _ . [m] . [m].
algorithm, even with a single particle, yields significgntiore @cnbed by the meap;, ; and covarianc, ;:

accurate results on a challenging real-world benchnia@tk glml . gtlm]  Im] gm] [m] s[m] (5)
. . . N t S Y1y H1 s BN s &N

than the previous version of the algorithm. These findings ar —_——— ——

of significance, as many mobile robot systems are plagued by landmark 6, landmark 6

control noise, but possess relatively accurate sensorge-Mo \we priefly review the key equations of the regular Fast-
over, they contradict a common belief that maintaining the e S_.AM algorithm, and refer the reader {d5]. Each update

tire covariance matrix is required for convergehsk in FastSLAM begins with sampling new poses based on the
_ o _ most recent motion commang:
2 Simultaneous L ocalization and Mapping S s s ) ©)
t t—1 .
SLAM addresses the problem of simultaneously recovering . o .
map and a vehicle pose from sensor data. The map contaﬂ%tr(]e dTatbtl:]tlngFr)][)?gSOtsl‘]ael ﬂ;setggﬁfﬂeongly uses the motiomeo
N features (landmarks) and shall be dendieé: 6,,...,60n. t St
The path of the vehicle will be denoteti= s,. . .., s, where Next, FastSLAM updates the estimate of the observed land-

mark(s), according to the following posterior. This pogter

t is a time index and; is the pose of the vehicle at time takes the measurementinto consideration:
Most state-of-the-art SLAM algorithms calculate (or ap- e ’
proximate) variants of the following posterior distriboni: p(Bn, | 5" 0t 20 (7)
p(©,s" |2 u' n') (1) = 0 plac| Buyys"me) p(6n, |57 2 0T
wherez! = z,..., 2 is a sequence of measurements (e.g. [m] [m] [m]
) - s ’ ~ N (z¢; [P ,R NN()"t; _= _
range and bearing to nearby landmarks), ahd= w1, ..., u; (339 (Bngoos 0. Re) e

is a sequence of robot controls (e.g., velocities for robd#lerer is a constant. This posterior is the normalized product
wheels). (As usual, we assume without loss of generalitly thaf two Gaussians as indicated. Howevey i§ non-linear, the
only a single landmark is observed at each ti)eThe vari- product will not be Gaussian in general. To make the result
ablesn? = n,,...,n; aredata association variables— each Gaussian, FastSLAM employs the standard EKF “tritk3]:
n; Specifies the identity of the landmark observed at time ¢ is approximated by a linear function (see below). Under this
Initially, we assume:! is known; we relax this assumption be-approximation, (7) is equivalent to the measurement update
low. equation familiar from the EKF literatufd 3].
_To calculate the posterior (1), the vehicle is given a proba- In a final step, FastSLAM corrects for the fact that the pose
g!hst]g motion model, mthe_}‘%r_mé).fthE C(.)nd'é'onal.gmbﬁb samples™! has been generated without consideration of the,
istributionp(s; | us, s;-1). This distribution describes how a o5t recent measurement. It does so by resampling the parti-

controlu,, asserted in the time intervill — 1;¢), affects the les[20]. Th bability for then-th pariicle to b led
resulting pose. Additionally, the vehicle is given a proitiab cles[20) © probability for than-th partice fo be sampie

. o ) S m
tic measurement model, denotgtt; | s, ©, n;), describing (With replacement) is given by the following variabie™’,
how measurements evolve from state. In accordance to tR@mmonly referred to aisnportance factor:
rich SLAM literature, we will model both models by nonlinear
functions with independent Gaussian noise: w™ = n/ Pzt | by, 8™ mp) p(6n, | st”‘[m],zt’l,nt”)ldém
p(zt | st,0,m:) = g(st,0n,) + et (2 ~ N Gegng ™R~ N @™ s
p(St ‘ Ut, 51571) = h(?l,t, 51571) + 6,5 (3) v v

Hereg andh are nonlinear functions, arg andd; are Gaus-

As shown in[15], the resampling operation can be imple-
i . X ; . . mented inO(M log N) time using trees, wher#/ is the num-
sian noise variables with covariange and P, respectively. ber of samples andV the number of landmarks in the map.
However, the number of particle® needed for convergence
3 FaStSLAM ) remains an open question.
FastSLAM[15] is based on the important observat[dn] that FastSLAM has been extended to SLAM with unknown data
the posterior can be factored association§14]. If the data association is unknown, each par-
T I t et e ticle m in FastSLAM makes its own local data association de-
p(®,s" |2, u,n’) =p(s” [ 2, u',n )pr" 8525w, n) (4) cision)™, by maximizing the measurement likelihood. The

n formula for finding the most likely data association maxiesiz
This factorization is exact and universal in SLAM problemsthe resulting importance weight:
It states that if one (hypothetically) knew the path of thhive < [m] [m]
L = argmaxw, - (n) (8)

cle, the landmark positions could be estimated indepehdent t

nt



s[m]

Herew!™ (n;) makes the dependence of the faatg?’ onthe where 2™ = (i, 5i™') denotes the predicted measure-
variablen, explicit. A key characteristic of FastSLAM is that ment,ég’"] - h(sg’f]] ,u;) the predicted robot pose, add" =
each particle makes its own local data association. Inasttr (., ) , )

EKF techniques must commit to a single data association hf-.:—1 the predicted landmark location. The matricésand
pothesis for the entire filter. Results [h4] show empirically G are the Jacobians (first derivatives) pfvith respect tof
that this difference renders FastSLAM significantly more ro@nds, respectively:

bust to noise than EKF-style algorithms. Gs = Vo, 9(Bnsrs0)

(11

se=il™li0,, =gl

4 FastSLAM 2.0 G = Vaglnise)l,,_jmy _gim 12

Our new FastSLAM algorithm is based on an obvious ineffitynder this EKF-style approximation, the proposal disttii
ciency arising from the proposal distribution of regulaista (9) is Gaussian with the following parameters:

SLAM. In regular FastSLAM, the posém] is sampled in ac- . -1

cordance to the prediction arising from the motion command s = |Gl TG+ P! (13)
ug, as specified in (6). It does not consider the measurement ] (] T ] 1 Il A[m]

2; acquired at time; instead, the measurement is incorporated psy = TG Q7 (2 — &) + 8 (14)
through resampling. This approach is particularly trosblae
if the noise in the vehicle motion is large relative to the me
surement noise. In such situations, sampled poses willlynost "l — R, + Gexl™, |G (15)

fall into areas of low measurement likelihood, and will setbs e

quently be terminated in the resampling phase with higharob4.2 Updating The Observed Landmark Estimate

bility. Unfortunately, many real-world robot systems at&t  The updating step remains the same as in FastSLAM (see (7)).
acterized by relatively high motion noise. As illustratediie  As stated in the previous sectiapis linearized to retain Gaus-
experimental results section of this paper, the waste medur sianity of the posterior. This leads to the following update

awhere the matri@&m] is defined as follows:

by this inefficient sampling scheme can be significant. equations, whose derivation is equivalent to that of tha-sta
dard EKF measurement updfes]:

4.1 Sampling The Pose m m ]

s - oa K= w6 (16)
FastSLAM 2.0 implements a single new idea: Poses are sam-
pled under consideration of both the motienand the mea- plty =+ K (- ) 17)
surement;. This is formally denoted by the following sam- [m] [m] m]
pling distribution, which now takes the’ measuremeninto Tne = (U-K"Go)E, (18)
consideration: 4.3 Thelmportance Weights

[m] t—1,[m] t _t _t . . . .
si -~ pse|s u,z,n’) (99 Resampling is necessary even in our new version of Fast-

| . 0 (6) i i th SLAM, since the particles generated do not yet match the de-
onnl C%T]a?(aersls?sgnsg hS \)/\’/e Im:%rrp%rgtlggourecu:p:r?tszrset%z ired posterior. The culprit is the normalizgt™ in (10),

‘ yh o 3 andmark bp ke A - bahich may be different for different particles. This normal-
of the observed landmark—obtained from the variableger js the inverse of the probability of the measurementeund
st=LIml yt=1 2t=1 pt=1 (which are included of the condi- h th particle: nim! — t=1[m] b -1 pt—-1 T,
tioning variables above). So in essence, the differencast-F em-th particle:™ = p(z | 5 U2, n) . To

. ’ g ' account for this mismatch, our algorithm resamples in propo
SLAM is that the measurement is incorporated. However, tion to the following importance factor:
this change has important ramifications. '
The proposal distribution (9) can be reformulated as follow w8 p(z: | s

t=1,m] ¢ i1 nt)

p(se | s 70t 2t nt) = // (2t | Ony .50, m0)
. . %/_/
= g™ / Pzt | Onyyseome) PO, | 8720 2070 0=t g, ~ N(ztia(Ong i) Re)
~ ~~ 7N - t—1,[m] t—1 _t—1 _t—1 [m]
- - p(On, | s cut T2 T T ) dfny, p(se | sy, ) dsy
o Im] [m] _[m]
m ~ Ny = ~ N(spi
p(se | S,!,f]wUt) (10) (Ony Py t—1 n,t,t—1) N (i85, 7 Pt)
_/_/

This expression can once again be approximated as a Gaus-
sian by linearizingy. The mean of this Gaussianig, and its

That is, the proposal distribution is the product of two facovaranceis . - .

tors: the familiar next state distributign(s; | i, u,), and GPGs +Gox,, Gy + Ry (19)

the probability of the measurement Calculating the latter -

involves an integration over possible landmark locatiéns 4.4 Unknown Data Associations

Unfortunately, sampling directly from this distributiosim- The approach for handling data association is similar totie

possible in the general case; it does not even possess a cloferegular FastSLAM: Again, we select the data association

form. Luckily, a closed form solution can be attainegyifs ~ thal maximizes the probability of the measuremenfor the
approximated by a linear functioh (nay remain non-linear!): m-th particle:

~ Nspin (I gy Py

= argmaxp(z: | nt,ﬁtfl’[m],st‘[m],ztfl,ut) (20)
nt

[m] ~[m]

alm m n
CRET I Zw[s '+ G- (On, *NEH ,]t—l) + Go - (s:—=8) ¢
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Figure 1: FastSLAM 2.0 applied to the Victoria Park benchmark data ¢a) Raw vehicle odometry (b) FastSLAM 2.0/=1 particle
(c) FastSLAM 2.0 with dynamic feature management.

At first glance, one may be tempted to substitui,@] for 5 Convergence
the probability on the right-hand side, as in regular Fasta key result in this paper is the fact that our new version of
SLAM. However, wg"ﬂ does not consider the sampled posd-astSLAM converges fol/ =1 particle, for a restricted class

[m] : . ; linear Gaussian problems (the same for which KFs con-
s; ', whereas the expression here does. This leads to a shgh@&rge[s; 18). Specifically, our result applies to SLAM prob-

different probability, which is calculated as follows. lems characterized by the following linear form:
p(ze | nt7ﬁt71’[m]7 st’[m]7zt717ut) (21) g(St, gnt) = gnt — St (23)
h - = _ 24
_ / oz | 9nt;nt78£m]) (0., | ﬁ:71,[m]78:71,[m]’zh1) do.,, ' (Ut,st 1) ut + St—1 ' ' (24)
~ ~ -~ ~ ~ Linear SLAM can be thought of as a robot operating in a Carte-
~ N(zri9(8n, ™) Ry ) ~nelml st sian space equipped with a noise-free compass, and sensors

] o ] ] that measure distances to features along the coordinate axe
Linearization ofg leads to a Gaussian ovef with mean The following theorem, whose proof can be found in the ap-

g(u[n'f]t,l, SL’"U and covariance;)ﬁ’"]. Both are functions of pendix, states the convergence of our new FastSLAM variant:

the data association variable. Theorem. For linear SLAM, FastSLAM withM =1 parti-
cles converges in expectation to the correct map if all festu

45 Feature Management are observed infinitely often, and if the location of one teat

Finally, in cases with unknown data associations, featuage is km_an in advance. - . .
to be created dynamically. As is common for SLAM algo- This theorem parallels a similar result previously pul#igh

rithms [5], our approach Creates new features when the mef' the Kalman filter{5; 18. However, this result applies to
surement probability in (20) is below a threshold. Howevetthe Kalman filter, whose update requires time quadraticén th
real-world data with frequent outliers will generate spus number of landmarksV. With M =1, the resampling step
landmarks using this rule. Followinp], our approach re- becomes obsolete and each update takes constant time. To
moves such spurious landmarks by keeping track of their posur knowledge, our result is the first convergence result for
terior probability of existence. Our mechanism analyzeame g constant-time SLAM algorithm. It even holds if all featsire
isurgmeni;c to th%presenqad ab%ence ?cf features. Observ;ng 8are arranged in a large loop, a situation often thought ofias t
andmark provides positive evidence forits existence, lhe |0\t case for SLAM problem).

not observing it whemL’"] falls within the robot’s perceptual

range provides negative evidence. The posterior prolgbili6 Experimental Results

of landmark existence is accumulated by the following Baye, : : :
filter, whose log-odds form is familiar fr)0/m the Iiterat%reg Systematic experiments showed that FastSLAM 2.0 provides
occupancy grid map<.6]: excellent results with surprlsmgly few part!cles, mciu_g
M=1. Most of our experiments were carried out using a
[m] pGI | sl 2, Almh benchmark data set collected with an outdoor vehicle indvict
o= Y T T | ol o] (22)  ria Park, Sydney7]. The vehicle path is 3.5km long, and the
¢ =P [ 8 20 ) map is 320 meters wide. The vehicle is equipped with differ-
[m] i i ential GPS that is used for evaluation only. Fig. 1a shows the
Herer, " are the log-odds of the physical existence of landmzap of the terrain, along with the path obtained by raw odome-
mark 6™ in mapm, andp(iW | sLm],zt, ﬁﬁm]) is the prob- try (which is very poor, the average RMS error is 93.6 meters)
abilistic evidence provided by a measurement. Under apprdhis data set is presently the most popular benchmark in the
priate definition of the latter, this rule provides for a simp SLAM research communit}g].
evidence counting rule. If the log odds drops below a prede- Figs. 1b&c show the result of applying FastSLAM with
fined threshold, the corresponding landmark is removed frod/ =1 particle to the data set, without (Fig. 1b) and with
the map. This mechanism enables particles to free thenssel(€ig. 1c) the feature management approach described in Sec-
of spurious features. tion 4.5. In both cases, the estimated vehicle path is shown




@)

RMS Pose Error (meters)

(b)

Accuracy of FastSLAM on Victoria Park Dataset

= = FastSLAM 1.0
= FastSLAM 2.0

10"
Number of Particles

Accuracy of FastSLAM Algorithms On Simulated Data

= = FastSLAM 1.0
— FastSLAM 2.0

efficient use of the particles, particularly in situationsathich
the motion noise is high in relation to the measurement noise
A main contribution of this paper is a convergence proof for
FastSLAM with a single particle. This proof is an improve-
ment over previous formal results, which applied to aldomis
much less efficient than the current one. In fact, this rast
first convergence result for a constant time SLAM algorithm.
The theoretical finding is complemented by experimental re-
sults using a standard benchmark data set. The new algorithm
is found to outperform the previous FastSLAM algorithm and
the EKF approach to SLAM by a large margin. In fact, a single
particle suffices to generate an accurate map of a challgngin
benchmark data set. Despite this surprising result, theofise
multiple particles is clearly warranted in situations wam-
biguous data association. We believe that our resultsrifites

RMS Pose Error (meters)

Number of Particles
Figure2: RMS map error for regular FastSLAM (dashed line) versud1]
FastSLAM 2.0 (solid line) on (a) the Victoria Park data (bjpalated
data. FastSLAM 2.0's results even with a single particlesaxeellent. (2]
as a solid line, and the GPS information is shown as a dash
line. Results of the same accuracy were previously achiev
only with O(N?) EKF-style method$7] and with FastSLAM 4
using M =50 particles. The feature management rule reduces
the number of landmarks in the map from 768 (Fig. 1b) to 343
(Fig. 1c). (5]

Fig. 2 plots the RMS error of the vehicle position esti-
mate as function of the number of particles for the Victoria
data set (panel a) and for synthetic simulation data (panel P
taken from[15]. While our new algorithm does approximately 6l
equally well for any number of particles, regular FastSLAM 7
performs poorly for very small particle sets. We suspect tha[{
the poor performance of regular FastSLAM is due to the fact
that the vehicle possesses relatively inaccurate odonfsgsy [g]
Fig. 1a), yet uses a low-noise range finder for landmark detec
tion (a common configuration in outdoor robotics), leadiag t [9]
the generation of many particles of low likelihood.

The small number of examples needed to obtain state-dfLdl
the-art estimation translates to unprecedented efficiehtye
new filter. The following table shows the results required téll]
process the Victoria Park data set on a 1GHz Pentium Pﬁ:z]
EKF 7,807 sec
regular FastSLAMM =50 particles| 315 sec
FastSLAM 2.0,M =1 particle 54 sec 413]
In comparison, the data acquisition required 1,550 seconds
Thus, while EKFs cannot be run in real-time, our new algof14]
rithm requires less than 4% of the vehicle’s trajectory time

7 Discussion [19]

This paper describes a modified FastSLAM algorithm that
is uniformly superior to the FastSLAM algorithms proposeq g
in [15]. The new FastSLAM algorithm utilizes a different pro-
posal distribution which incorporates the most recent meas [17]
ment in the pose prediction process. In doing so, it makegmor

that SLAM can be solved robustly by algorithms that are sig-
nificantly more efficient than EKF-based algorithms.
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Appendix
The linear form (23) and (24) implieg™ = s,[ff]l + uyg, 2 =
/“‘[T:L] — 9,[;11]1 —uy,Gg =1,Gs = —1, andQEm] = Ri+ EEZL]FP

ng,t—1 4 A ¢
From that we obtain for the mean and covariance (13) and (i
proposal distribution:

-1

R RS (25)
pt = s R+ S ) T - n s )
+s£nf]1 + ut (26)

The update of the landmark mean (Eg. (16) and (17)) resobees t

[m]

unt,t =

[m]

Moy t—1 + EE’LnZ,]t—l

(Rt + ELnZ,]tfl)il(Zt - ME’L”Z,]tfl + 91[‘@1 + 7‘15)(27)

We define the error in the robot pose and landmark locations as
a,[sm] = s,[sm] — s and ,BLmt] = NEZZ] — 0, (28)

We first characterize the effect of map errgren the pose errai:
Lemma 1. If the error8.™), of the observed landmark at timet
is smaller in magnitude than the robot pose ech?], a,[f"] shrinks

in expectation as a result of this measurement. Converié@jﬁ‘,]t is

R. C. Smith and P. Cheeseman. On the representation and es-

J.D. Tardés, J. Neira, P.M. Newman, and J.J. Leonard. Rob
mapping and localization in indoor environments using son

(32)
a™ + =R+, )T B, - el

(m] [m] 117t aim [m]
= o+ | I+ (R + Znt,t—l)Pt (ﬂnt,tfl — Qg

The lemma follows from the fact that,, S[""! andP; ' are pos-

ng,t—17

gﬁve semidefinite, hence the inverse bf (R, + £!™, )P lisa

ng,t—1

] is larger in magnitude if and only d,[ff]]

[m]

contraction matrix.E[a;

S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, andgepends on the sign @™, > ol™: however, E[al™] cannot
A.Y. Ng. Simultaneous mapping and localization with sparse L )

n

exceedBL:",]tq in this case. ged

R. van der Merwe. N. de Freitas. A. Doucet. and E. Wan. The ©Of particular interest is the result of observing drehoring land-

mark, by which we mean the landmark whose location is known.

S.B. Williams, G. Dissanayake, and H. Durrant-Whyte. An efWithout loss of generality, we assume that this landmatk is
ficient approach to the simultaneous localisation and nmappi

Lemma 2. If the robot observes the anchoring landmadik its
pose error will shrink in expectation.

Proof. The anchoring landmark has zero errg?rﬁ?z] = 0, and its
covariance is also zerdi[lf’z] = 0. Plugging this into (32), we get:

Ela™] = a

m

m — -1 m
"4 I+ R+ 0P (0-al™)
]1 _ [I+RtPt71]710t[m]

[
t
[
t t—1

(33)
ged.
Finally, a lemma similar to Lemma 1 can be stated on the effect

pose errorgy on map errors3. Its proof is analogous that of Lemma
1, with reverse roles ok andg.
[m]

Lemma 3. If the pose error, is smaller than the errqﬂffft”,]t
of the observed landmark in magnitude, observing; shrinks the
landmark erroﬁ,[[t",]t in expectation. Conversely,oitﬁ“f]1 is larger than
the landmark erroB,[:t",]t, the latter may increase, but in expectation
will not exceech!™! .

Proof of Theorem. Let B,{m] denote landmark error that is largest
in magnitude among all landmark errors at time

g =

= «

(34)

argmax \ﬁgﬁ]\
B [m]
n,t

Lemma 3 suggests that this error may increase in expectétinonly

if the absolute robot pose errmﬁrf1 exceeds this error in magnitude.
However, in expectation this will only be the case for a lidinum-

larger than the pose errof™, the latter may increase, but in expec-ber of iterations. In particular, Lemma 1 guarantees t{&t, may

tation will not exceefﬂ,[{ﬁ]t.
Proof. The expected error of the robot pose at titrie given by

Elaf"] = EBls" —s] = Els/"]-Els] (29
The first term is obtained via the sampling distribution (2)d the
second term is obtained from the linear motion model (24)ingt

Efa™)] SR+ 2T ) T (B -

[m]

oy s ) + ol (30)

For linear SLAM, the expectatioB|z:] = 0, — E[s¢] = On, —us —
s¢t—1. With that, the expression in the brackets becomes
Blz] — ply + s 4w

[m
= On, — Ut — St—1 — [y,

_ [m] [m]
= ;7 — IBnt,tfl

]t—l + 91[‘@1 + uy

ts

(1)

only shrink in expectation. Furthermore, Lemma 2 statet ekiary
time the anchoring landmark is observed, this error willighiby a
finite amount, regardless of the magnitude@éﬁ”. Hence,oz,[ff]1 will
ultimately become smaller in magnitude (and in expectatioan the
largest landmark error. Once this has happened, Lemmaesdtadt
the latter will shrink in expectation every time the landiné ob-
served whose error is largest. Itis now easy to see that;ﬁi&hand
a,[ff]] converge to zero: Observing the anchoring landmark indaces
finite reduction as stated in (33). To increa:sﬁ”1 to its old value
in expectation, the total landmark error must shrink in etaton
(Lemma 3). This leads to an eternal shrinkage of the totalrfeark
error down to zero. Since this error is an upper bound for ¥peeted
pose error (see Lemma 1), we also have convergence in ekpecta
for the robot pose error. ged.



