

2009 TE Sessions Supported by

THE ARTHUR M. BLANK
FAMILY FOUNDATION

Intro to Robotics

September 15, 2009 RoboJackets TE Sessions

www.robojackets.org

Key Information

Klaus 1116 Tuesday 5PM – 7:30PM

Andy Bardagjy- andyb@gatech.edu

Stefan Posey - stefan.posey@gatech.edu

Sponsors

Robolackets

Mission Statement

Promote - Educate - Advance

Educate

Provide tools to students students so they can successfully participate in the FIRST FTC and FRC competitions.

Expose students to STEM concepts using robotics as a vehicle.

TE Schedule

09/15

09/22

09/29

10/06

10/13

10/20

10/27

11/03

11/10

Introductory

Introduction

Mechanical Power Trans

Fluid Power & Automation

Manipulation

Manipulation II

Drive Types

Autonomous Control

Autonomous Control II

Competition Techniques

Special

Autonomy

Autonomy II

AutoDesk Inventor

Computer Vision

Electrical Design

Electrical Design

Compact RIO

Compact RIO II

Mechanical Design

INTRODUCTION TO ROBOTICS

What is a robot?

What is a Robot?

- It is artificially created
- It can sense its environment, and manipulate or interact with things in it
- It moves without direct human intervention
- It appears to have intent or agency

Robot Applications

20th Century

Three "Ds"

- Dirty
- Dull
- Dangerous

Commercial / Industrial

- iRobot
 - Roomba
- KUKA
- FANUC
- EPSON

Government / Military

- Defense
 - Phalanx CIWS
- UAV
 - Surveillance
 - Communication
- Rescue
- Bomb Disposal

Research

- NASA
 - Rovers, Landers, Satellites
- DOD
 - DARPA
- Georgia Tech
 - Robotics and Intelligent Machines
 - http://robotics.gatech.edu
 - BORG Lab, IMDL, UAV Lab, etc
 - GTRI

Education

- FIRST* (mentor)
- RoboCup
 - Small Size*
 - Medium
 - Humanoid
- BattleBots*
- AUVSI
 - IGVC* Ground
 - AUVC Underwater
 - IARC Arial
- IEEE

Note V1 → ReboJackets Team

Robot Applications

21st Century

Human Centric Robotics

- Healthcare/Therapy
- Education
- Entertainment

RoboJackets

15

keepon

H. Kozima & M. Michalowski

Simon

Andrea Thomaz GaTech

RoboJackets

17

Hanson Robotics

ROBOT MIMIC GIVES A SPEECH

Footage courtesy of University of Bristol

Pleo

Tuesday, September 15, 2009

INTRODUCTION TO LABVIEW

What is LabVIEW?

- LabVIEW is a graphical programming language
- Intuitive
- Used in research, industry and education (that's us!)
- Instrumentation

Data Flow

- Graphical programming language
- Data Flow language

LabVIEW Virtual Instruments

Front Panel

- User Interface
 - Controls = Inputs
 - Indicators = Outputs

Block Diagram

- Data travels on wires from controls through functions to indicators
- Blocks execute by dataflow

Controls Palette

Control Numeric

IndicatorMeter

Front Panel Block Diagram Mapping

Functions and Structures Palette

Installing LabVIEW

Installing LabVIEW

- Windows (XP, Vista, 7)
 - Insert CD, click setup.exe
 - Only install base package
- Mac (Leopard, Snow Leopard)
 - Insert CD, click the installer
- No Linux support for toolkit :(

Authorize LabVIEW

- Not needed on OSX
- Have the key for Windows (see whiteboard)

Getting the NXT Toolkits

- Connect to "robojackets"
- Windows
 - Go to "network shares"
 - Click "Tomato" "RED"
- OSX
 - Open Finder
 - Go -> Connect to Server
 - cifs://192.168.1.1

Install NXT and FTC Toolkits

- Install NXT Module 2009 Beta
 - Click installer in directory (osx and windows)
- Install FTC Toolkit 2010
 - Click installer in directory (osx and windows)
- When you plug in the NXT brick
 - it will install the drivers
 - prompt to update the brick firmware

Getting Started With Tetrix

Activity: Tower

Construct a tower using pieces from the workshop kit only

Tallest tower to support roll of wire wins!

