# Bipolariti

# Introduction

• Who is Bipolariti?

- Bipolariti is a vertical spinner with two equal and opposite spinners on each side of the bot, with a bulbous shape to deflect opponents and protect itself.
- While unique, Bipolariti *does* fit the parameters of the competition and is feasible to manufacture





# Weapon Assembly

List of Parts:

- Weapon Material: AR500 Steel
- Fastener types: 8-32 screws and a 5/16" shoulder bolt
- Belts: 2PJ246 V-Belt
- Bearings: Needle bearings
- Motors: BadAss 2305-1440kV
- Mounting System: Uprights built into the main chassis rails



# General Robot Stats

### Weapon Stats

| Stat                      | Value               | Unit |
|---------------------------|---------------------|------|
| Total Weight              | 3.125               | lb   |
| Weapon<br>Assembly Weight | 0.238 (per<br>disk) | lb   |
| Dedicated Armor<br>Weight | 108                 | g    |
| Weight of Frame           | 1.5                 | lb   |

| Stat                     | Value                     | Unit    |
|--------------------------|---------------------------|---------|
| Weapon to<br>Motor Ratio | 1.146:1                   |         |
| Weapon<br>Assembly MOI   | 0.000054431<br>(per disk) | kg/m^2  |
| Max RPM                  | 9662                      | RPM     |
| Max Kinetic<br>Energy    | .028                      | kJ      |
| Spin Up Time             | .07(95%)                  | seconds |

# Chassis

### Specifications:

- <sup>1</sup>/<sub>8</sub>" Alu. Bottom Plate
- ¼" Alu. Pocketed Uprights
- TPU armor
- Box Joints and 4-40 Screws
- Weight of 1.5 lbs





### Electronics

- Battery : GNB 3s 930mAh Battery
  - Dedicated battery cover
- Drive Motor: Dragon Dart Box ~1500 rpm
- Weapon Motor: BadAss 2305-1040Kv
- Switches: FingerTech
- ESCs: 15A dual brushed ESC
- SEC: FLYCOLOR 50A Brushless (Green Boxes)
  - WILL be cutting BEC wires (love you Jacques <3)</li>

# Drive Train

- Drive Transmission S3M Timing Belt w/ matching pulley
- Mounting System:
  - Clamps for drive motors
  - Face mounting for weapon motors
- Wheels: SSP Drive Wheels
  - with 4mm Bore twist Hub
  - $\circ$  <sup>1</sup>/<sub>4</sub>" Ground Clearance

Using similar drive to SSP kit

• Calculations:

Wheel radius = 1.75 in

Ideal speed: 10 mph = 4.4704 m/s -> angular speed = 234.6 radius/s

RPM of drive motor = 1500 rpm

### Armor

### Specifications:

- 95A TPU
- 0.25 in thick
  - Low Infill
  - High Wall Count
- Box Joints and 4-40 Screws
- Weight of 54g each
- 2 solid pieces





### **Current BOM**

| Vendor            | Part Number | Component                            | Category    | Quantity | Unit Cost | Price   | Link                    |
|-------------------|-------------|--------------------------------------|-------------|----------|-----------|---------|-------------------------|
|                   |             |                                      | *           |          |           | \$0.00  |                         |
| just cuz robotics |             | dartbox v2 drive- Viper 6mm          | Motors *    | 2        | \$41.50   | \$83.00 | https://justcuzrobotics |
| Badass power      |             | BadAss 2305-1050Kv Brushless Mot     | Motors *    | 2        | \$30.00   | \$60.00 | https://badasspower.c   |
| just cuz robotics |             | Badass Rebel V2 lite series brushles | Electrica 🔹 | 2        | \$17.00   | \$34.00 | https://badasspower.c   |
| just cuz robotics |             | S3M timing belt 74T, 4mm             | Mechani 🔻   | 2        | \$3.25    | \$42.84 | https://justcuzrobotics |
| In shop           |             | GNB 3s 930mAh Battery                | Electrica • |          |           | \$0.00  |                         |
| just cuz robotics |             | Budget 15A dual brushed ESC          | Electrica - | 1        | \$25.00   | \$25.00 | https://justcuzrobotics |
| just cuz robotics |             | SSP Wheels 1.75x.5 inch with integra | Mechani 🔻   | 2        | \$18.00   | \$36.00 | https://justcuzrobotics |
|                   |             | TPU                                  | *           |          |           | \$0.00  |                         |
|                   |             | .25 in Aluminum                      | *           |          |           | \$0.00  |                         |
|                   |             | .125 in Aluminum                     | •           |          |           | \$0.00  |                         |

### **Future Plans**

- Need to get another attachment method for the armor on to the bottom plate.
- Armor goes into the support plates a little.
- To lighten the robot, pocketed weapon uprights and potentially a thinner bottom plate (¼" to ½") will be designed
- More mounting for the armor
- Channels for battery wiring
- More work on self righting hoop
- Weight reduction on base plate
- Front/Rear end attachments

### **Questions to Consider**

Physical:

- Accounting for wires, fasteners, belts, and armor configurations, is your robot within weight limit?
- What is your weapon's ground clearance?
- How are wires/motors mounted inside your robot? Are wires separated from rotating motor components?

#### <u>Mechanical:</u>

- How are each of your belts tensioned?
- Are the fasteners sized reasonably given the thickness of your plates?
- Are all the parts on your robot machinable (e.g. CMA tools, CNC, Welding, 3D Printing, etc.)?
- Are all the parts on your robot assemblable?
- Are parts filleted and chamfered to help with fits and prevent fractures?
- What type of bearings are you using? Why use these bearings?
- Are slots, pockets, and other milled features in the design makeable via a standard size End mill or will a new one have to be ordered?

#### <u>Fasteners:</u>

- Are all the fastener holes accessible when assembled? Demonstrating an exploded view animation can help identify/diagnose these issues.
- Are the fasteners for motors properly chosen? Make sure fasteners don't go too far into the motor.
- Did you standardize all the fasteners to Metric or SAE? Did you minimize fastener types as much as possible?

### **Questions to Consider cont.**

#### Fasteners cont.:

- Is the quantity of the screws in shear minimized?
- Do all threads have a screw engagement length 1.5x the diameter (steel) or 2x the diameter (aluminum)?
- Are the centers of important holes (screw holes, clearance holes, etc.) at least 1x the diameter or more away from edges?

### <u>Electrical:</u>

- Are your drive ESCs capable of running your motors bidirectionally (or do you know how to adjust them if not)?
- Are your switch and battery easily accessible?
- On what basis did you select your battery capacity (i.e. why do you think it should be so high/low)?
- How are you planning to manage connections between electrical components? Relays? Ring connectors? Soldered joints?

### <u>As we continue our transition to competitive combat robotics with more iterative designs:</u>

- Have you considered different robot configurations when going against different types of robots?
- Have you performed a potential failure mode analysis for major systems?
- Do you intend on using a minibot when there is a weight bonus allocation? When there isn't a weight bonus allocation?
- Are you implementing a wedge? If so, do you have different types of wedge configurations?