

Drive Configurations

September 23, 2008

What is a Drive Train?

- A mechanism that moves your robot base to different positions
- Includes several components
 - Motor drivers
 - Motors
 - Gearboxes
 - Wheels/treads
 - Chassis

Drive Train Concepts

Traction

- A term referring to the amount of force that a wheel or track can apply along the ground without slipping.
- Related to wheel or track material and contact area.

Drive Train Concepts

Turning Radius

 The radius of the curve created by a point on the robot when changing the robots orientation.

Traction Devices (Wheels)

Solid Wheels

Construction

RoboJackets

- Inner plastic core (delrin)
- Outer rubber molding
- With or with out bearings
- Key Aspects
 - One solid piece
 - Wont go flat
 - Durable

RoboJackets

Pneumatic Wheels

- Construction (think bicycle wheels)
 - Inner core (spoked, metal hub, plastic, etc)
 - Outer rubber air supported surface

Other Wheels

- Semi Pneumatic
 - Foam filled
- Metal strip reinforced
- Spoke Wheels
- Casters

RoboJackets

Easy to mountDirection bias

Omni Wheels

- provide force in only one direction
- use sideways rollers to slide in the other direction

Mecanum Wheels

• Similar to omni except rollers are at 45 deg

Drive Methods (Wheel Configurations)

RoboJackets

Tank Drive

Uses two separately controlled drive sides

• Can use wheels or tracks.

Tank Drive

- Wheel forces generate a turning torque while friction from dragging
 wheels sideways resists the turning torque
- By having a wheelbase wider than long the turning torque is guaranteed to overcome the frictional resistance torque.

Tank Drive

Advantages

- Mechanically simple
- Saves space
- Zero turning radiusSimple controls (intuitive)
- Disadvantages
 - More turning effort/traction tradeoff
 - Single axis of motion
- Other
 - High traction can be achieved although at the cost of more turning effort

Swerve Drive

Advantages

- mechanically simple (with 2WD)
- low turning effort with high traction wheels
- Simple controls in open areas
- Disadvantages
 - large turning radius
 - difficult to power all wheels
 - can lose traction on non-level terrain
 - difficult to control in tight spaces due to turn radius

RoboJackets

Crab Drive

- Allows each wheel to pivot so all wheels face the driving direction.
- Wheels can pivot independently or synchronously

Crab Drive

Advantages

RoboJackets

- Very low turning effort
- High traction with all wheels in driving direction
- Very maneuverable
- Disadvantages
 - Mechanically complex
 - Current designs take up a lot of space
 - Difficult controls (non-intuitive)

Holonomic - Omni-Drive

- Uses omni-wheels to achieve double axis drive
- Sacrifices traction for maneuverability

Holonomic - Omni-Drive

- Wheels are placed in a formation that allows for motion in all directions.
- By adding velocity vectors (speeds and directions) the motion of the robot can be controlled

Holonomic - Omni-Drive

Advantages

- Very low turning effort
- Very maneuverable
- Mechanically simpler than crab drive
- Disadvantages
 - Complex controls (non-intuitive)
 - Low traction
 - Omni wheels can fail with so many moving parts (plastic)

Holonomic - Mecanum

- Advantages
 - Very low turning effort
 - Very maneuverable
 - Same wheel layout as tank
- Disadvantages
 - Complex controls (non-intuitive)
 - Mechanum wheels are more complex than omni wheels

RoboJackets

Drive Base Inspection

Wide or Narrow

Configurations Seen in FIRST

3x3 Tank

- Past kit bots have this configuration (2x2)
- Middle wheels should be lower to give added turning performance.
- Advantages
 - Good strength for pushing
 - Relatively simple
- Disadvantages
 - Less turning performance than Ackerman

Tank w/ Omnis

- Idea

 Make it easier to turn while still retaining some traction.
- Advantages
 - No castor bias
 - Reduced turning friction
- Disadvantages
 - Easier to get spun
 - around by opponent

RoboJackets

Resources for wheels

- Further reading
 - http://en.wikipedia.org/wiki/Wheel
- Places to buy
 - http://www.mscdirect.com
 - http://www.robotmarketplace.com
 - <u>http://www.mcmaster.com</u>
 - http://www.andymark.biz