

FIRST - IGVC - BATTLEBOTS - ROBOCUP

IGVC Presentation
June 4, 2011

www.robojackets.org

Team Members

- Joe Hickey
 - BS ME / Sophomore
 - Mechanical design and build
- John Madden
 - BS ME and CS/ Senior
 - Project Manager, Mechanical build, Software
- Kenneth Marino
 - BS EE / Sophomore
 - Software, Electronics
- Paul Foster
 - BS ME / Senior
 - Software

- Stefan Posey
 - BS AE / Senior
 - Mechanical build
- Jacob Schloss
 - BS AE / Senior
 - Software, Electronics
- Akshay Srivastava
 - BS AE / Junior
 - Electronics
- Peter Quick
 - BS ME, Junior
 - Mechanical Build

Mechanical Overview

Jeanni, the 2010 Base

Roxi, the 2011 Base

Improvements on Design

- Enhanced ride characteristics for higher top speed
- Increased adverse weather performance
- Outer panel simplification
- Reduction in overall mass
- Improved payload accommodation
- Ability to accommodate electronics and computer

Robot Zones

- 1. Front: Forward LIDAR, Motors, GPS, & Power Distribution / Supply
- 2. Middle: Main
 Batteries, Motor Drive
 Electronics,
- 3. Rear: Laptop, Camera, Rear LIDAR, Motors, GPS, Button Panel, & Safety Light

Motors & Suspension

- Independently suspended 4 wheel drive system
- Custom shocks
- 4x NPC T64 brushed motors
- Custom adapter plate and rear shaft mount for encoders

Water-proofing and Electronic-Accommodation

- Polycarbonate removable access panels
- Weather stripping and silicon based caulk
- Accommodates larger laptop
- SICK LIDAR in front and rear with unobstructed view and overhangs

Sensors

Vision

- AVT Guppy F-036C camera
- 752 X 480 resolution at 64 fps
- Polled at 10 Hz

GPS

- Garmin "GPS 18-5 Hz"
- Waypoint following
- Placing objects in world space

LIDAR

- Used for object and ramp detection
- Front object detector
- Rear safety feature

Wheel Encoders

- US Digital E3-200-375-I-HM-B
- Interupts on micro-controller
- Allows for the robot's velocity to be measured

Computers

- Main computer
 - msi laptop, Intel Core i7 cpu, cuda enabled NVIDIA 285M gpu, 6 GB RAM
 - Responsible for data processing, path planning and control algorithms
 - Forms core of sensor interconnect
- MCU
 - 6 ATmega328p based Arduino Duemilanove boards
 - Data acquisition from wheel encoders
 - Motor control boards

Safety Features

- Emergency Stop
 - Physical button and remote
 - Disconnects power to the motors
- Safety Light
 - Turns on with power
 - Flashes in autonomous mode
- Rear-facing LIDAR
 - Detects movement behind the robot

Software Architecture

- Split between
 - Laptop → algorithms and control
 - Microcontrollers → Data acquisition
- Primary language C++
- Uses Boost and OpenCV external libraries

Algorithms - Vision

- Color segmentation to determine danger map
- Optical flow with SIFT feature tracking.
- RANSAC on SIFT features finds most consistent
 2D affine transform.
- Local maps projected onto global map using affine transform

Algorithms - Others

- Path Planning
 - Potential fields algorithm
- Sensor Filtering
 - Averaging filter to reduce GPS error
- LIDAR
 - Running average filter for noise
 - Erosion dilation filter

Sponsors

CATERPILLAR®

NORTHROP GRUMMAN

ReboJackets

The George W. Woodruff School of Mechanical Engineering

Georgia College of Tech Computing

