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1 DOCUMENT ORGANIZATION 

1.1 Overview 

The Joint Architecture for Unmanned Systems (JAUS) is the architecture defined for use in 

the research, development and acquisition of Unmanned Systems.  The overall scope of 

JAUS is defined in three separate volumes.  Volume I is the JAUS Domain Model, Volume 

II is the JAUS Reference Architecture, and Volume III is the JAUS Document Control Plan.  

The Reference Architecture Specification is comprised of three parts:  Architecture 

Framework, Message Definition, and Message Set. 

1.1.1 Volume I:  JAUS Domain Model 

The Domain Model (DM) is the model of both known and potential operational requirements 

that must be supported by the Unmanned System.  Two different organizations are defined 

within the Domain Model: the Acquirer and the Developer.  The Acquirer is the organization 

that determines the operational requirements of the Unmanned System.  The Developer is the 

organization responsible for building the Unmanned System, as defined by the Acquirer. 

It is the intent of JAUS that the DM be used to model all requirements, known and 

anticipated, of the Unmanned Systems.  The DM is a tool used by the Developer to 

understand the requirements of the Acquirer.  The Domain Model document is written in the 

language of the Acquirer. 

1.1.2 Volume II:  JAUS Reference Architecture 

The Reference Architecture (RA) is the technical specification that the Developer shall use to 

implement JAUS on the Unmanned System.  It is also the document that will be used by the 

Acquirer to assess technical compliance.  Therefore, the Reference Architecture document is 

written in the language of scientists and engineers. 

The main purpose of the RA is to describe all functions and messages that shall be employed 

to design new components.  In addition, the RA describes all messages currently defined and 



Version 3.3 06/27/2007 2 

the rules that govern messaging.  Messaging is the only accepted method used to 

communicate between components. 

In terms of chronological development, capabilities described in the DM will always precede 

those that appear in the RA.  This is because the RA documents only those requirements in 

the DM that have already gone through a technical evaluation and acceptance process.  This 

process is performed by an organization through the development of models and simulations 

or through the development of a prototype.  In any event, all components defined in the RA 

can be traced back to a DM capability, whereas the reverse is not always true. 

1.1.2.1 Reference Architecture Part 1:  Architecture Framework 

Part 1, Architecture Framework, of the Reference Architecture specification provides a 

description of the structure of JAUS based systems.  This document serves as the primary 

mapping of Domain Model requirements to the JAUS message set.  Although message 

specifics are not stated in the Architecture Framework, guidance for the use of messages to 

achieve Domain Model specified capabilities is provided in the component discussions. 

1.1.2.2 Reference Architecture Part 2:  Message Definition 

Part 2, Message Definition, of the Reference Architecture specification specifies the JAUS 

specific protocol for transmission of JAUS messages.  This document specifies the JAUS 

message header and the types of JAUS messages.  The specification focuses on the rules for 

messaging as opposed to the domain specific semantics contained in the message set itself. 

1.1.2.3 Reference Architecture Part 3:  Message Set 

Part 3, Message Set, of the Reference Architecture specification specifies the domain specific 

messages and their exact content.  The Message Set is intended to for use within unmanned 

systems either with or without the preceding two parts of the Reference Architecture 

Specification. 
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1.1.3 Volume III:  JAUS Document Control Plan 

The Document Control Plan (DCP) defines the process used to identify and track requested 

changes to accepted JAUS documentation.  The process for controlling changes to the JAUS 

documents is based on commercial standards body processes.  The DCP defines the roles by 

committees and its members in the change process as well as providing a historical record of 

changes and their rationales. 

1.2 Applicable Documents 

1.2.1 Joint Technical Architecture 

The Joint Technical Architecture (JTA) is a set of standards that supports interoperability and 

data interchange among military systems.  The reference for the JTA document is: 

Department of Defense Joint Technical Architecture (JTA), Version 3.1, March 2000. 

1.2.2 International System of Units 

JAUS mandates the use of the International System of Units as specified in NIST Special 

Publication 330, 1991 Edition, “The International System of Units (SI),” Barry N. Taylor, 

National Institute of Standards and Technology.  The URL for this publication is 

http://physics.nist.gov/Document/sp330.pdf 
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2 INTRODUCTION 

2.1 JAUS Purpose 

The purpose of JAUS is to support the acquisition of Unmanned Systems by providing a 

mechanism for reducing system life-cycle costs.  This is accomplished by providing a 

framework for technology reuse/insertion.  JAUS defines a set of reusable “components” 

and their interfaces.  These reusable components not only reduce the maintenance costs of a 

system, but also dramatically reduce the development costs of any follow-on system(s).  

Reuse allows a component developed for one Unmanned System to be readily ported to 

another Unmanned System or to be easily replaced when technological advances. 

Technology insertion is achievable when the architecture is designed to be both modular and 

scaleable.  Components that are deemed necessary for the mission of the Unmanned System 

may be inserted simply by bundling. 

JAUS defines components for all classifications of Unmanned Systems from remote control 

toward autonomous, regardless of application.  As a particular system evolves, the 

architecture is already in place to support more advanced capabilities. 

2.2 Technical Constraints 

Technical constraints are imposed on JAUS to ensure that the architecture is applicable to the 

entire domain of Unmanned Systems - now and in the future.  The constraints are: 

• Platform Independence 

• Mission Isolation 

• Computer Hardware Independence 

• Technology Independence 

2.2.1 Platform Independence 

Analysis has shown that Unmanned Systems will be based on a variety of mission 

requirements, including but not limited to surveillance, reconnaissance, force protection, 
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combat, security, and emergency response.  In order for JAUS compliant components to be 

interoperable, no assumptions about the underlying vehicle are made. 

2.2.2 Mission Isolation 

The purpose of Unmanned Systems is to gather information, alter the state of the 

environment, or both.  The set of these sensing and effecting tasks are called missions.  The 

purpose of this isolation is the anticipation that many Developers will build their systems to 

support a variety of missions, possibly with removable mission modules. 

2.2.3 Computer Hardware Independence 

The growth in the computer industry has been enormous over the past 20 years and there are 

no indications that the growth will slow down.  Future Unmanned Systems must be able to 

capitalize on commercial advancements in computing and sensor technology.  The issue is 

two-fold: 

• First, a single Unmanned System must be able to evolve over its product life cycle to 

accommodate new missions and greater degrees of autonomy.  An architecture that 

imposes a specific hardware implementation reduces the opportunity to take advantage of 

future technical advancements. 

• Second, each Unmanned System Developer should have the flexibility to design a 

computer hardware architecture that meets that particular system’s requirements.  

Computer hardware that is appropriate for one Unmanned System may not be appropriate 

for another. 

JAUS must maintain computer hardware independence in order to be applicable to all 

Unmanned Systems. 

2.2.4 Technology Independence 

The final technical constraint is technology independence.  This constraint is similar to 

computer hardware independence but focuses more on the technical approach rather than the 

computer hardware.  For example, an Unmanned System may use a visual system for 
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numerous purposes.  A visual system may provide feedback to the Unmanned Systems 

operator to support tele-operated driving.  A visual system may also perform obstacle 

detection, target detection, target identification, target tracking, landmark recognition, and so 

forth.  The technology of edge detection is often used in visual systems to perform these 

functions.  However, there may be other techniques besides visual systems and edge 

detection that could perform obstacle detection.  Active Laser Detection and Ranging 

(LADAR) is one possibility.  The point is that there may be multiple technical solutions to a 

problem.  An architecture that is built around a particular technology solution may eliminate 

a superior alternative. 

2.3 JAUS Nomenclature 

In the language of JAUS, a number of terms are used to delineate position within the overall 

hierarchy of the system and must therefore, be well understood.  These terms describe the 

different levels of the architecture and define the required internal hierarchical sub-grouping. 

• System A system is a logical grouping of subsystems.  The system definition 

provides a functional grouping for the full robotic or unmanned 

capability.  This grouping includes all human interface subsystems and 

unmanned subsystems common with robotic and unmanned 

applications. 

• Subsystem A subsystem performs one or more unmanned system functions as a 

single localized entity within the framework of the System.  A 

subsystem shall provide one or more communication command and 

control capabilities.  A mobile subsystem shall execute mobility 

commands as a single unit and retain a defined center of gravity relative 

to all articulations and payloads. 

• Node A JAUS Node defines a distinct processing capability within a 

subsystem.  A node retains a set of coherent functions and shall provide 

a node manager component to manage the flows and controls of JAUS 

message traffic.   

• Component A component provides a unique functional capability for the unmanned 

system.  JAUS messages are defined with respect to these capabilities 

so that context in command and control is provided.  A JAUS 

component resides wholly within a JAUS Node. 

• Instance Duplication and redundancy of JAUS Components are provided by 

Component Instances.  All Components are uniquely addressable using 

Subsystem, Node, Component and Instance Identifiers. 



Version 3.3 06/27/2007 7 

• Message A JAUS message is comprised of the message header and associated 

data fields as defined within this document. 

2.4 Definitions 

Message definitions within JAUS use the following terms to define various fields.  The 

following definitions provide clarity and guidance for the understanding of the terms. 

 

RMS:   The root-mean-square (RMS), often used as a synonym for the standard 

deviation of a variant X, is the square root of the mean squared value of x 

or  

 

      for a discrete distribution, and 

 

 

      for a continuous distribution. 

 

 Physical scientists often use the term root-mean-square as a synonym for 

standard deviation when they refer to the square root of the mean squared 

deviation of a signal from a given baseline or fit.  RMS is a mean value 

and not an instantaneous measurement. 

Position RMS:  The position RMS provides a means of determining the error associated 

with a reported position.  This value is measured over time and therefore 

not representative of the error any particular position value.  It provides a 

statistical measure of the magnitude of the possible error in 3 dimensions.  

This value is reported in meters. 

Attitude RMS:  The attitude RMS provides a means of determining the error associated 

with a reported attitude.  This value is measured over time and therefore 

not representative of the error any particular attitude value.  It provides a 

statistical measure of the magnitude of the possible error. 

Velocity RMS:  The velocity RMS provides a means of determining the error associated 

with a reported speed.  This value is measured over time and 

representative of the error associated with the manner in which speed is 

recorded and reported.  It provides a statistical measure of the magnitude 

of the possible error. 

Presence Vector: JAUS provides for variable length messages.  These messages either have 

repeating data or have a mixture of required and optional data fields.  The 

Presence Vector is used to indicate which of the optional data fields are 

included.  Presence Vector bits are set to one (1) to indicate the optional 
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field is present.  The bit is set to zero (0) to indicate the field is not 

present.  Reserved bits shall be set to zero (0). 

Data Validity: The Data Validity field in JAUS messages indicates if the originator of 

the message had sufficient information to populate the fields indicated 

accurately.  This field is independent of the Presence Vector.  This field 

typically uses an identical mapping as the Presence Vector when a 

Presence Vector is defined.  A set bit (‘1’) indicates data validity where a 

clear bit (‘0’) indicates a possibly invalid field. 
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3 SYSTEM TOPOLOGY 

Section  2.3 introduced several JAUS hierarchical terms: System, Subsystem, Node, 

Component and Instance.  A graphical representation of how each element fits into the JAUS 

system topology is shown below in Figure  3-1. 

SYSTEM

Subsystem Subsystem Subsystem

Node Node Node Node

Comp1, Inst1 Comp2, Inst1 Comp2, Inst2 CompN, Inst1

 

Figure  3-1 - JAUS System Topology 

Another way to show how JAUS elements can be assembled to create a JAUS system is 

shown in Figure  3-2: 

 

Figure  3-2 - JAUS System Communications Topology 
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3.1 The System Level 

A System is a logical grouping of one or more subsystems.  A system would normally be 

grouped in such a manner as to gain some cooperative advantage between the constituent 

subsystems.  An example system might group the following subsystems: 

• An operator control unit (OCU) 

• One or more signal repeater subsystems 

• One or more vehicle subsystems working towards a common goal 

3.2 The Subsystem Level 

A subsystem is an independent and distinct unit.  The unit may consist of any number of 

computer nodes and software components necessary to support its functional requirements.  

The overall collection of nodes and components in the subsystem, are the parts of the unit 

that shall comply with the JAUS RA.  Examples of subsystems include: 

• An operator control unit, 

• An unmanned ground mobility platform (bulldozer, tractor, ground shuttle, etc.), 

• An unmanned air vehicle (fixed wing, rotary wing, missile, etc.), 

• An unmanned undersea vehicle (swimmer, crawler, mobile mine, etc.), 

• An unmanned surface vehicle (boat, ship, etc.), 

• An unmanned stationary sensor (seismic anomaly detector, data repeater, etc.), 

• A surveillance system (thermal imager, video camera, etc.), 

3.3 The Node Level 

A node is composed of all the hardware and software assets necessary to support a well-

defined computing capability within the subsystem.  A node is often treated as a “black-box” 

containing all the hardware and software necessary to provide a complete service.  Examples 

of nodes within a subsystem might be: 

• A mobility controller 

• A world modeling computer 

• A vision processor 

• A master controller 

• A payload controller 
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From a hardware perspective, a node consists of the computing and interface resources 

required to support its software components and their interaction with each other, the rest of 

the subsystem, and any devices they operate.  A node may be implemented on one or more 

interconnected computing elements as determined by the system engineer and as required to 

provide its function.  A node connects to the devices it operates using the hardware and 

software techniques required by the device itself and device’s own level of computing 

capabilities, if any.   Separate nodes may be interconnected using a wide variety of hardware 

and software techniques such as serial networks (Ethernet, 1553, CAN, RS232, etc.) or 

shared bus (e.g. VME, PCI, etc.) or common memory areas.  A node is often identified by its 

existence as a separate entity on a network that interconnects the nodes in a subsystem (e.g., 

it has a network address). 

From a software perspective, a node consists of the software components that run on the node 

and it is therefore, highly scaleable.  A single node could be loaded with all the software 

necessary to control the whole subsystem, or many nodes could be installed so as to break the 

job down into more manageable pieces.  Detailed configuration is the task of the systems 

engineer. 

3.4 The Component/Instance Level 

A component is the lowest level of decomposition in the JAUS hierarchy.  A component is a 

cohesive software unit that provides a well-defined service or set of services.  Generally 

speaking, a component is an executable task or process.  All of the components currently 

supported by JAUS are specified in Chapter  5. 

Component redundancy is supported, by allowing multiple instances of a component to run 

on the same node.  The address of each instance of a component serves to distinguish 

between these instances.  While instances of the same component share an identical interface 

they may vary in implementation. 

3.5 Topology Simplified 

Now that the five most elementary JAUS terms have been defined, a simple and direct 

statement can be made that gets to the heart of how they work together — 
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• A subsystem is composed of component software, distributed across one or more nodes. 

From a systems engineering standpoint, this last statement is significant in that it implies, yet 

does not specify.  Since configurations can be virtually unlimited, node or component 

interface boundaries are not dictated.  This is one of the key aspects of JAUS flexibility. 

3.6 Configuration 

One of the principal goals of JAUS is to provide a level of interoperability between 

intelligent systems that has been missing in the past.  Towards this end, JAUS defines 

functional components with supporting messages, but does not impose regulations on the 

systems engineer that govern configuration. 

JAUS does have one absolute, unwavering requirement that can effect configuration.  It is: 

� To achieve the desired level of interoperability between intelligent computing entities, all 

messages that pass between JAUS defined components (over networks or via airwaves), 

shall be JAUS compatible messages. 

The statement above introduces JAUS messages, which are explained in detail in the 

Reference Architecture Specification Parts 2 and 3.  For now, just consider a message as a 

means of exchanging information.  A close examination of this statement reveals that 

“messages” pass between “components” via some communications medium.  It is important 

to understand that this restriction only applies to JAUS messages. 

Figure  3-3 presents an example configuration that is intended to explain further.  The 

diagram depicts two JAUS defined components in blue boxes, a user defined component in 

green, a dedicated hardware device in yellow and a data storage area in brown. 
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DGPS

Global Pose

Sensor

Shared         

Memory

Global Path 

Segment Driver

Node 1

I/O Server

Node 2

Raw Data

RS-232
Raw Data

Raw Data Ethernet Socket

JAUS Message

 

Figure  3-3 - Example Configuration #1 

 

1. Node-1 is configured as a Positioning unit and is dominated by the Global Pose Sensor 

component.  It also supports an I/O server task and a shared memory area.  The 

Differential Global Positioning System (DGPS) is configured as a dedicated device 

within the node.  The DGPS is setup in streaming mode so that positioning data is sent 

out over RS-232 at some regular interval. 

2. Node-2 is configured as a Path Driving unit and is dominated by the Global Path 

Segment Driver component.  It relies on Global Pose Sensor messages to perform its 

path-tracking task. 

3. The I/O server’s job is to listen to the RS-232 COM port and send each received data 

stream to shared memory after it arrives. 

4. The Global Pose Sensor component task reads shared memory whenever necessary to get 

the latest DGPS information. 

Important Note: So far all of the data is in raw (non-JAUS) format because typically 

dedicated sensors, like the DGPS, do not support JAUS messages. 

5. When the Global Pose Sensor component completes its position calculations, it sends a 

JAUS formatted Global Pose Sensor message to Node-2.  This sequence loops 

continually. 

Notice that although the streaming data coming from the DGPS to the I/O server and on to 

shared memory is not in JAUS format, that the interoperability rule remains unbroken.  Only 

when data is sent between JAUS defined components, must it be formatted into a JAUS 

compatible message. 

Two simpler variations on the example configuration are depicted by Figure  3-4 and Figure 

 3-5.  Numerous other configurations are also possible. 
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Figure  3-4 - Example Configuration #2 

DGPS
Global Pose

Sensor

Global Path 

Segment Driver

Node 1

Raw Data

RS-232

Unix Socket

JAUS Message

 

Figure  3-5 - Example Configuration #3 

Each of the three configurations will work equally well.  Which one is used is entirely the 

decision of the systems engineer.  Configuration is an engineering function and is not 

mandated by JAUS.  As long as the configuration employed does not pose any impediment to 

JAUS interoperability, the systems engineer is free to employ the most efficient design 

possible. 

3.6.1 A Priori Configuration 

Previous versions of JAUS embraced a philosophy whereby system, subsystem, node and 

component configuration parameters are known or determined before they must be 

implemented.  This so-called “a priori” knowledge imposes certain considerations on the 

system engineer that must be taken into account during design.  Some of the more important 

matters are as follows: 

• Each subsystem and node must be assigned a unique node number manually 

• All serial communications must agree on common line control parameters 

• Each Ethernet socket and the server process IP address must be assigned 
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• All user defined tasks must be defined and assigned a user defined component ID 

• In multi-vendor projects, vendors must agree upon where node boundaries lie so as 

not to encounter any functional overlap or deficiency 

3.6.2 Dynamic Configuration 

This version of JAUS introduces dynamic configuration.  See Part 3 for the dynamic 

configuration messages. 
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4 COMPONENT SPECIFICATION 

4.1 Component Overview 

Components represent the lowest level of decomposition within the reference architecture.  A 

component performs a set of operations that have a logical grouping within the context of the 

domain.  Interaction with components is through messages as defined herein.  The 

component’s messages constitute its interface.  A subsystem is composed of components that 

interoperate using the defined message set to complete the tasks they are designed to 

perform. 

4.2 Component Identification 

The component identification shall be comprised of a component name and identification 

number. 

4.2.1 Component Name 

A component shall have a name that is unique to the entire application domain.  The naming 

convention shall follow these guidelines: 

4.2.1.1 Component Name Format 

The Component Name Format shall be a single character string derived from American 

Standard Code for Information Interchange (ASCII) with the characters’ ASCII values 

ranging from 48 through 57—numbers zero through nine, 65 through 90—upper case 

alphabetic, 97 through 122—lower case alphabetic, and 95—the underscore character. 

4.2.2 Component Identification Number 

Every component has a unique ID number, which is defined by the JAUS specification.  

Within a subsystem, multiple instances of a component are allowed within a node and/or 

subsystem.  Redundant components must either be on separate nodes or use unique instance 
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ID’s within a node.  JAUS views component granularity to be at a macro rather than micro 

level.  JAUS is not a device architecture, so components are not associated with a device; 

rather, a component defines a function of the subsystem.  A component can interface to 

devices, but this interface is outside the scope of JAUS.  Aspects of component execution on 

their host computing resource such as scheduling, address space protection, fault tolerance, 

etc., are also outside the scope of this architecture. 

4.3 Common Component Behaviors 

JAUS defines a core set of messages and states and the behaviors associated with these 

messages.  The core messages and their behaviors form a template for developing JAUS 

components. 

4.4 Component Function Specification 

4.4.1 Single Function 

A component shall perform a single cohesive function.  The scope of a component’s function 

should be the one that has been broken down into a primitive function to the point where it is 

not advantageous to divide it further. 

4.4.2 Bandwidth Minimization 

The optimal component function shall be defined such that the subsequent interfaces will 

minimize communication bandwidth. 
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5 COMPONENT DEFINITIONS 

JAUS is comprised of a series of components with well-defined interfaces.  A developer can 

combine and integrate these components in any manner that is seen fit for a particular 

application.  The JAUS components are grouped as follows: 

• Command and control components 

• Communications components 

• Platform components 

• Manipulator components 

• Environmental sensor components 

The components within each of these groupings are described in the subsequent sections of 

this document. 

5.1 Command and Control Components 

The following components provide a mechanism for system integration at the system and 

subsystem levels.  As such, each of the following command and control components is 

allowed to output any message to any component and to receive any message from any 

component. 

5.1.1 System Commander (ID 40) 

Function: 

The System Commander coordinates all activity within a given system. 

Description: 

The System Commander component has the responsibility of performing the multi-

subsystem coordination, issuing commands, and querying status for the system operation.  

The functions of the System Commander component may be performed by humans or by 

computer resources, or both.  When humans perform the System Commander functions, the 

human computer interface shall be considered part of the System Commander component.   
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5.1.2 Subsystem Commander (ID 32) 

Function: 

The Subsystem Commander coordinates all activity within a given subsystem. 

Description: 

The Subsystem Commander component has the responsibility of performing the mission 

planning, issuing commands, and querying status for the subsystem operation.  The functions 

of the Subsystem Commander component may be performed by humans or by computer 

resources, or both.  When humans perform commander functions, the human computer 

interface shall be considered part of the Subsystem Commander component. 

5.2 Communications Components 

5.2.1 Communicator (ID 35) 

Function: 

The Communicator component maintains all data links to other subsystems within a system. 

Description: 

The communicator component allows for a single point of entry to any subsystem (See 

Figure  5-1).  This specification provides flexibility in communications systems design and 

implementation. 
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Figure  5-1 Communicators Provide Single Point of Subsystem Entry 

5.3 Platform Components 

5.3.1 Global Pose Sensor (ID 38) 

Function: 

The function of the Global Pose Sensor is to determine the global position and orientation of 

the platform. 

Description: 

The Report Global Pose message provides the position and orientation of the platform.  The 

position of the platform is given in latitude, longitude, and elevation, in accordance with the 

WGS 84 standard.  Platform orientation is as defined in Part 2 of this document. 

5.3.2 Local Pose Sensor (ID 41) 

Function: 

The function of the Local Pose Sensor is to determine the local position and orientation of the 

platform. 
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Description: 

The Report Local Pose message provides the position and orientation of the platform relative 

to a local reference frame.  The position of the platform is given in Cartesian coordinates x, 

y, and z, relative to a defined local reference frame.  Platform orientation is as defined in Part 

2 of this document. 

5.3.3 Velocity State Sensor (ID 42) 

Function: 

The Velocity State Sensor has the responsibility of reporting the instantaneous velocity of the 

platform. 

Description: 

The velocity state of a rigid body is defined as the set of parameters that are necessary to 

calculate the velocity of any point in that rigid body.  Six parameters are required to specify a 

velocity state of a rigid body in terms of some fixed reference coordinate system.  The first 

three parameters represent the velocity components of a point in the rigid body that is 

coincident with the origin of the fixed reference.  The second three components represent the 

instantaneous angular velocity components.  It is possible to represent the six velocity state 

parameters as a screw, about which the rigid body is rotating and translating along at that 

instant. 

The reference frame for the velocity state sensor component is selected as a fixed coordinate 

system that at this instant is co-located with and aligned with the vehicle or system 

coordinate system.  Thus the message data ‘velocity x’, ‘velocity y’, and ‘velocity z’ 

represents the current velocity of the subsystem’s control point at this instant.  For example if 

‘velocity x’ has a value of 3 m/sec and ‘velocity y’ and ‘velocity z’ are zero, then the vehicle 

is moving in the forward direction at a velocity of 3 m/sec.  The message data ‘omega x’, 

‘omega y’, and ‘omega z’ represent the actual rate of change of orientation or angular 

velocity of the vehicle about its coordinate axes. 
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5.3.4 Primitive Driver (ID 33) 

Function: 

The Primitive Driver component performs basic driving and all platform related mobility 

functions including operation of common platform devices such as the engine and lights. 

Description: 

This component does not imply any particular platform type such as tracked or wheeled, but 

describes mobility in six degrees of freedom using a percent of available effort in each 

direction.  Additionally, no power plant (gasoline, diesel, or battery) is implied and the 

component functions strictly in an open loop manner, i.e., a velocity is not commanded since 

that requires a speed sensor.  Note that the specific actuator commands are not defined by 

JAUS. 
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Driver

Commanded wrench effort

Actuator commands

 

Figure  5-2 Wrench Effort Provides Basic Platform Mobility 

5.3.5 Reflexive Driver (ID 43) 

Function: 

The function of the Reflexive Driver is to modify a commanded wrench effort if its execution 

would result in motion that compromises platform safety or stability. 

Description: 

The Reflexive Driver component can be thought of as a filter.  It receives a desired motion 

(Commanded Wrench Effort) and usually just outputs this desired motion (typically to the 
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Primitive Driver component).  However if the input desired motion would cause the platform 

to collide with an obstructing object or would compromise platform stability, then the 

Reflexive Driver component would output a modified motion (Modified Wrench Effort).  

This component provides a low-level protection for the platform and should not be 

interpreted as providing a high-level re-planning capability.  It is designed for operation 

between a higher-level driver (e.g., Vector Driver, Waypoint Driver, etc. described later) and 

a Primitive Driver.  The output of the component is a wrench effort that is communicated via 

the Set Wrench Effort message. 

The sensors used to determine the platform’s safe operation are not specified.  Some possible 

inputs address limits to a platform’s speed and/or turning rate and obstacle detection.  

Following the processing of the inputs, the Reflexive Driver may modify the input wrench to 

ensure the safety (e.g., avoid a collision) and stability (e.g., prevent a rollover) of the 

platform. 
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Figure  5-3 Reflexive Tele-Operation Block Diagram 

5.3.6 Global Vector Driver (ID 34) 

Function: 

The function of the Global Vector Driver component is to perform closed loop control of the 

desired global heading, altitude and speed of a mobile platform. 
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Description: 

The Global Vector Driver component takes the desired heading of the platform as measured 

with respect to the global coordinate system and the desired speed of the platform.  The 

desired heading angle is defined in a right hand sense about the Z axis of the global 

coordinate system (the Z axis points downward) where North is defined as zero degrees.  The 

desired Altitude Above Sea Level (ASL) provides a means through which systems capable of 

flight can be controlled.  For ground-based systems, the Altitude ASL field is ignored.  The 

Global Vector Driver component also receives data from the Global Pose Sensor component 

and the Velocity State Sensor component.  This information allows the Global Vector Driver 

component to perform closed loop control on the platform’s global heading, altitude and 

speed. 

The output of the Global Vector Driver component is a wrench message that is typically sent 

to the Primitive Driver component.  This message is interpreted by the Primitive Driver 

component in order to enact platform motion.  The operator, acting as the system 

commander, could set the desired speed, altitude and heading.  This scenario is illustrated in 

Figure  5-4. 
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Figure  5-4 Global Vector Driving Block Diagram 

Finally, Figure  5-5 depicts a scenario where the commanded wrench effort calculated by the 

Global Vector Driver is now sent to the Reflexive Driver.  This allows the Reflexive Driver 

to modify this commanded wrench effort in order to maintain vehicle stability, e.g., platform 

rollover, and safety, e.g., obstacle avoidance. 
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Figure  5-5 Global Vector Driving with Reflexive Driving Block Diagram 

5.3.7 Local Vector Driver (ID 44) 

Function: 

The Local Vector Driver component performs closed loop control of the desired local 

heading, pitch, roll and speed of a mobile platform. 

Description: 

The Local Vector Driver component is very similar in function to the Global Vector Driver 

component, the difference being that the desired heading is defined in terms of a local 

coordinate system as opposed to the global coordinate system.  The Local Vector Driver 

component takes as input four pieces of information, i.e. the desired heading, pitch and roll 

of the platform as measured with respect to a local coordinate system and the desired speed 

of the platform.  The desired heading angle is defined in a right hand sense about the Z axis 

of the local coordinate system (the Z axis points downward) where zero degrees defines a 

heading that is parallel to the X axis of the local coordinate system.  The pitch is the angle 

about the Y-axis and the roll is the desired angle about the X-axis. The Local Vector Driver 

component also receives data from the Local Pose Sensor component and the Velocity State 

Sensor component.  This information allows the Local Vector Driver component to perform 

closed loop control on both the platform’s local orientation and speed. 

The output of the Local Vector Driver component is a wrench message that is typically sent 

to the Primitive Driver component.  This message is interpreted by the Primitive Driver 
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component in order to enact platform motion.  The operator, acting as the system 

commander, could set the desired speed and local heading.  This scenario is illustrated in 

Figure  5-6. 
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Figure  5-6 Local Vector Driver Block Diagram 

Finally, Figure  5-7 depicts a scenario where the commanded wrench effort calculated by the 

Local Vector Driver is now sent to the Reflexive Driver.  This allows the Reflexive Driver to 

modify this commanded wrench effort in order to maintain vehicle stability, e.g., platform 

rollover, and safety, e.g., obstacle avoidance. 
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Figure  5-7 Local Vector Driver with Reflexive Driving Block Diagram 
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5.3.8 Global Waypoint Driver (ID 45) 

Function: 

The function of the Global Waypoint Driver is to determine the desired wrench of the 

platform given the desired waypoint(s), travel speed, current platform pose and current 

velocity state. 

Description: 

A single waypoint or a set of waypoints is provided via the Set Global Waypoint message.  A 

waypoint consists of the desired position and orientation of the platform.  The second input 

consists of the desired travel speed.  The travel speed is set to zero for all transitions from a 

Standby State to a Ready State.  The desired travel speed remains unchanged unless a new 

Set Travel Speed Message is received.  The travel speed may then be changed at any time 

during waypoint navigation.  Once the platform reaches its final waypoint, the component 

must transition back to a Standby State.  The Global Waypoint Driver component will also 

use the current global pose and velocity state as communicated via the Report Global Pose 

message and the Report Velocity State message. 

The output of the component is a commanded wrench that is communicated via the Set 

Wrench Effort message. 

The two examples shown in Figure  5-8 and Figure  5-9 are scenarios where the operator, 

acting as the System Commander, sets the desired waypoints and travel speed without and 

with reflexive driving, respectively. 
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Figure  5-8 Global Waypoint Driver Block Diagram 
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Figure  5-9 Global Waypoint Driving with Reflexive Driving Block Diagram 

5.3.9 Local Waypoint Driver (ID 46) 

Function: 

The function of the Local Waypoint Driver is to determine the desired wrench of the 

platform given the desired waypoint(s), travel speed, current platform pose and current 

velocity state. 



Version 3.3 06/27/2007 29 

Description: 

A single waypoint or a set of waypoints is provided via the Set Local Waypoint message.  A 

waypoint consists of the desired position and orientation of the platform and is defined in 

terms of a local coordinate system.  The second input consists of the desired travel speed.  

The travel speed is set to zero for all transitions from a Standby State to a Ready State.  The 

desired travel speed remains unchanged unless a new Set Travel Speed message is received.  

The travel speed may then be changed at any time during waypoint navigation.  Once the 

platform reaches its final waypoint, the component must transition back to a Standby State.  

The Local Waypoint Driver component will also use the current local pose and velocity state 

as communicated via the Local Pose message and the Velocity State message. 

The output of the component is a desired wrench that is communicated via the Set Wrench 

Effort message. 

The two examples shown in Figure  5-10 and Figure  5-11 are scenarios where the operator, 

acting as the System Commander, sets the desired waypoints and travel speed without and 

with reflexive driving, respectively. 
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Figure  5-10 Local Waypoint Driving Block Diagram 
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Figure  5-11 Local Waypoint Driving with Reflexive Driving Block Diagram 

5.3.10  Global Path Segment Driver (ID 47) 

Function: 

The function of the Global Path Segment Driver is to perform closed loop control of position 

and velocity along a path where the path is defined in a generic manner. 

Description: 

The Global Path Segment Driver differs from the Waypoint Drivers in that the exact path 

between “waypoints” is strictly defined.  A path segment will be defined by specifying the 

three-dimensional coordinates of three points, P0, P1, and P2 together with one scalar 

weighting value w1.  The equation of the path is defined as 
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where p represents some point on the path segment as u varies from 0 to 1.  This equation 

defines a path segment as a second order polynomial (ellipse, parabola, or hyperbola) that 

lies in the plane defined by the three points P0, P1, and P2.  When u=0, p(0) = P0 and when 

u=1, p(1) = P2 and thus the path segment begins at point P0 and ends at point P2.  The point 
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P1 is a control point that is not necessarily on the path.  Figure  5-12 shows a path segment 

that is defined by P0 = [1, 2, 0]
T
, P1 = [3, 5, 0]

T
, P2 = [5, 1, 0]

T
, and w1 = 1.5.  Figure  5-13 

demonstrates the effect of varying the weighting factor w1.  As can be seen in the figure, a 

larger value of w1 draws the curve towards the path control point P1. 
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Figure  5-12 - Sample Path Segment with Control Points Shown 

 

One feature of this representation of a path segment is that at the start of the path, the line 

from P0 to P1 will be tangent to the curve.  Similarly at the end of the path, the line from P1 

to P2 will be tangent to the curve.  This feature makes it easy to define subsequent path 

segments so that there will be continuity at the connection point.  Figure  5-14 shows the 

path segment shown in Figure  5-12 connected to a second path segment defined by the 

points P2 = [5, 1, 0]
T
, P3 = [6, -1, 0]

T
, and P4 = [8, -1, 0]

T
 with a weighting factor of w1 = 2.  

As shown in the figure, continuity of slope will occur if the line from P1 to P2 is collinear 

with the line from P2 to P3. 

The second input consists of the desired travel speed.  The travel speed is set to zero for all 

transitions from a Standby State to a Ready State.  The desired travel speed remains 

unchanged unless a new Set Travel Speed message is received.  The travel speed may then 
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be changed at any time during waypoint navigation.  Once the platform reaches its final 

waypoint, the component must transition back to a Standby State. 
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Figure  5-13 - Effect of Weighting Parameter w1 on Curve Shape 
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Figure  5-14 - Slope Continuity at Path Segment Connection Point 
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The two examples shown in Figure  5-15 and Figure  5-16 are scenarios where the operator, 

acting as the System Commander, sets the desired path segments and travel speed without 

and with reflexive driving, respectively. 
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Figure  5-15 Path Segment Driving Block Diagram 
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Figure  5-16 Path Segment Driving with Reflexive Driving Block Diagram 
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5.3.11 Local Path Segment Driver (ID 48) 

Function: 

The function of the Local Path Segment Driver is to perform closed loop control of position 

and velocity along a path where the path is defined in a generic manner. 

Description: 

A three-dimensional path segment will be defined by specifying the coordinates of three 

points, P0, P1, and P2 together with one scalar weighting value w1.  The equation of the path 

is defined as 

2

1

2

2

2

110

2

uw)u1(u2)u1(

uw)u1(u2)u1(
)u(

+−+−

+−+−
=

PPP
p , 

where p represents some point on the path segment as u varies from 0 to 1.  A more complete 

discussion of this path segment representation is presented in the description of the Global 

Path Segment Driver component (See Section  5.3.10). 

The two examples shown in Figure  5-17 and Figure  5-18 are scenarios where the operator, 

acting as the System Commander, sets the desired path segments and travel speed without 

and with reflexive driving, respectively. 
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Figure  5-17 Local Path Segment Driving Block Diagram 

 



Version 3.3 06/27/2007 35 

Reflexive 

Driver

System 

Commander

Local Pose 

Sensor

Velocity State 

Sensor

Local Path 

Segment 

Driver

Desired local path segment(s)

Desired travel speed

Commanded wrench effort

Velocity

State

Local Pose

Primitive 

Driver

Modified wrench effort

Range  

SensorRangeRoll

 

Figure  5-18 Local Path Segment Driving with Reflexive Driving Block Diagram 

5.4 Manipulator Components 

This section provides a brief explanation of several components that can be used for 

command and control a manipulator arm.  The components focus on a serial manipulator 

comprised of any number of prismatic and revolute joints.  The components are grouped 

according to function into the following categories: 

Low Level Manipulator Control Components – The one component in this category allows 

for low-level command of the manipulator joint actuation efforts.  This is an open-loop 

command that could be used in a simple tele-operation scenario.  The component in this 

category is listed as follows: 

• Primitive Manipulator Component 

Manipulator Sensor Components – These components, when queried, return instantaneous 

sensor data.  Three components are defined that return respectively joint positions, joint 

velocities, and joint torques or forces.  The components in this category are listed as follows: 

• Manipulator Joint Position Sensor Component 

• Manipulator Joint Velocity Sensor Component 



Version 3.3 06/27/2007 36 

• Manipulator Joint Force/Torque Sensor Component 

Low Level Position and Velocity Driver Components – These components take as inputs the 

desired joint positions, the desired joint velocities, the desired end-effector pose, or the 

desired end-effector velocity state.  Closed-loop control is implied.  No path information is 

specified.  The components in this category are listed as follows: 

• Manipulator Joint Positions Driver Component 

• Manipulator End-Effector Pose Driver Component 

• Manipulator Joint Velocities Driver Component 

• Manipulator End-Effector Velocity State Driver Component 

Mid Level Position and Velocity Driver Components – Two components are grouped here 

under this heading.  The first takes as input the goal values for each joint parameter at several 

time values together with motion constraints, i.e. maximum joint velocity, maximum 

acceleration, and maximum deceleration.  The second takes as input a series of end-effector 

poses at specified time values.  Closed-loop control is implied.  The components in this 

category are listed as follows: 

• Manipulator Joint Move Driver Component 

• Manipulator End-Effector Discrete Pose Driver Component 

5.4.1 Definition of Coordinate Systems 

Global Coordinate System 

Points that are defined in this coordinate system are defined in units of longitude, latitude, 

and elevation.  The X-axis is defined as pointing North and the Z axis points downward. 

Vehicle Coordinate System 

This coordinate system is defined as attached to the vehicle frame.  The X-axis points in the 

forward direction and the Z-axis points downward.  The Y-axis is defined so as to have a 

right-handed coordinate system, i.e. i × j = k where j, k, and i are unit vectors along the X, Y, 

and Z coordinate axes. 
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Manipulator Base Coordinate System 

In most cases, this coordinate system is attached to the vehicle base just as the vehicle 

coordinate system is.  The origin is located at the intersection of the line along the first joint 

axis, S1, and the line along the first link, a12.  The Z axis is along S1 and the direction of the 

X-axis is user defined, but fixed with respect to the vehicle frame.  Since the manipulator 

base coordinate system and the vehicle coordinate system are both attached to the vehicle 

base, the transformation matrix that describes the relative position and orientation of these 

two coordinate systems will be constant (in some cases a manipulator may be attached to the 

end of another manipulator and this would not be the case). 

End-Effector Coordinate System 

This coordinate system is attached to the last link of the serial manipulator.  The origin is 

located at the point that is a distance Sn (S6 for a six axis manipulator) along the last joint axis 

vector (S6 for a six axis manipulator) from the intersection of the lines along the last joint 

axis and the preceding link axis (S6 and a56 for a six axis manipulator).  The Z-axis is along 

the Sn vector.  The direction of the X-axis is user defined, but of course must be 

perpendicular to the Z-axis.  The Y-axis is defined by the right-hand rule. 

Note:  The distance Sn is returned by the Primitive Manipulator Component via the Report 

Manipulator Specifications Message. 

5.4.2 Primitive Manipulator (ID 49) 

A modification from JAUS Reference Architecture release 3.1 to the Report Manipulator 

Specifications message has been made to account for the necessity to define the relative 

position and orientation of the manipulator base coordinate system with respect to the vehicle 

coordinate system. 

Function: 

This component is concerned only with the remote operation (open-loop control) of a single 

manipulator system.  The manipulator may or may not have joint measurement sensors that 

would provide joint position and joint velocity information.  Without joint measurement 

sensors, the operator can only send joint motion efforts as commands to the manipulator.  



Version 3.3 06/27/2007 38 

This component does not use any joint angle or velocity feedback from the manipulator.  It 

only receives the desired percentage of maximum joint effort for each joint as an input.   

Associated Messages: 

• Set Joint Effort 

• Query Manipulator Specifications 

• Query Joint Efforts 

• Report Manipulator Specifications 

• Report Joint Efforts 

Description: 

This component is the low level interface to a manipulator arm and is in many respects 

similar to the Primitive Driver component for mobility of the platform.  When queried, the 

component will reply with a description of the manipulator’s specification parameters, axes 

range of motion, and axes velocity limits.  The notations used to describe these data are 

documented in many popular text books on robotics and were previously presented in Part 2, 

Section 2.5.  The mechanism specification parameters as reported by the Report Manipulator 

Specifications Message consist of the number of joints, the type of each joint (either revolute 

or prismatic), the link description parameters for each link (link length and twist angle as 

shown in Part 2, Figure 2.2), the constant joint parameter value (offset for a revolute joint 

(see Part 2, Figure 2.3), and joint angle for a prismatic joint (see Part 2, Figure 2.4)).  The 

minimum and maximum allowable value for each joint and the maximum velocity for each 

joint follow this information.  Motion of the arm is accomplished via the Set Joint Effort 

message (See Figure  5-19).  In this message, each actuator is commanded to move with a 

percentage of maximum effort. 
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Figure  5-19 Joint Effort Provides Basic Manipulator Mobility 

5.4.3 Manipulator Joint Position Sensor Component (ID 51) 

Function:   

The Function of the Joint Position Sensor Component is to report the values of manipulator 

joint parameters when queried.  

Associated Messages: 

• Query Joint Positions 

• Report Joint Positions. 

Description:   

The Report Joint Positions message provides the instantaneous joint positions.  The positions 

are given in degrees for revolute and in meters for prismatic joints.  The component is 

depicted in Figure  5-20. 
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Figure  5-20  Joint Position Sensor Component  

5.4.4 Manipulator Joint Velocity Sensor Component (ID 52) 

Function:   

The Function of the Joint Velocity Sensor is to report the values of instantaneous joint 

velocities when queried.  

Associated Messages: 

• Query Joint Velocities 

• Report Joint Velocities. 

Description:   

The Report Joint Velocities message provides the instantaneous joint velocities.  The 

velocities are given in radians/sec for revolute and in meters/sec for prismatic joints.  The 

component is depicted in Figure  5-21. 

Joint Velocity

Sensor

actual instantaneous joint

velocities ;

Report Joint Velocities Message

request instantaneous joint

velocities ;

Query Joint Velocities Message

 

Figure  5-21  Joint Velocity Sensor Component 
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5.4.5 Manipulator Joint Force/Torque Sensor Component (ID 53) 

Function:   

The Function of the Joint Force/Torque Sensor is to report the values of instantaneous 

torques (for revolute joints) and forces (for prismatic joints) that are applied at the individual 

joints of the manipulator kinematic model when queried.  

Associated Messages: 

• Query Joint Force/Torques 

• Report Joint Force/Torques 

Description:   

The Joint Force/Torque Sensor component provides the instantaneous joint forces or torques 

that are acting on each joint of the manipulator kinematic model.  Forces are returned for 

prismatic joints in units of Newton’s.  Torques is returned for revolute joints in units of 

Newton-meters. 

5.4.6 Manipulator Joint Positions Driver Component (ID 54) 

Function:   

The Function of the Joint Positions Driver is to perform closed-loop joint position control. 

Associated Messages: 

• Set Joint Positions 

• Report Manipulator Specifications 

• Report Joint Efforts 

• Report Joint Positions 

• Set Joint Effort 

Description:   

The inputs are the desired joint values, current joint angles, and the manipulator 

specifications report.  The output is the joint effort level that is sent to the Primitive 

Manipulator component.  It should be noted that in most implementations that this 

component and the Primitive Manipulator component would be embedded in the same node 
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that will facilitate the control process.  Figure  5-22 depicts the Manipulator Joint Positions 

Driver component. 
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Figure  5-22 Manipulator Joint Positions Driver Component 

5.4.7 Manipulator End-Effector Pose Driver Component (ID 55) 

Function: 

The Function of the Manipulator End-Effector Pose Driver is to perform closed-loop position 

and orientation control of the end-effector. 

Associated Messages: 

• Set Tool Point 

• Set End-Effector Pose 

• Query Tool Point 

• Report Manipulator Specifications 

• Report Joint Efforts 

• Report Joint Positions 

• Set Joint Effort 

• Report Tool Point 

Description:   

This component performs closed-loop position and orientation control of the end-effector.  

The input is the desired position and orientation of the end-effector specified in the vehicle 

coordinate system, the current joint angles, and the data from the manipulator specification 

report.  The output is the joint effort level that is sent to the Primitive Manipulator 



Version 3.3 06/27/2007 43 

component.  It should be noted that in most implementations that this component and the 

Primitive Manipulator component would be embedded in the same node that will facilitate 

the control process.  The component is depicted in Figure  5-23. 
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Figure  5-23 Manipulator End-Effector Pose Driver 

5.4.8 Manipulator Joint Velocities Driver Component (ID 56) 

Function:   

The Function of the Joint Velocities Driver is to perform closed-loop joint velocity control.  

Associated Messages: 

• Set Joint Velocities 

• Report Manipulator Specifications 

• Report Joint Effort 

• Report Joint Velocities  

• Set Joint Effort 

Description: 

The input consists of the desired instantaneous joint velocities, the current joint velocities, 

and the data from the manipulator specification report.  The output is the joint effort level 

that is sent to the Primitive Manipulator component.  It should be noted that in most 

implementations that this component and the Primitive Manipulator component will be 

embedded in the same node which will facilitate the control process.  The component is 

depicted in Figure  5-24. 
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Figure  5-24 Manipulator Joint Velocities Driver 

5.4.9 Manipulator End-Effector Velocity State Driver Component (ID 57) 

Function:   

The Function of the Manipulator End-Effector Velocity State Driver is to perform closed-

loop velocity control of the end effector. 

Associated Messages: 

• Set End-Effector Velocity State 

• Report Manipulator Specifications 

• Report Joint Effort 

• Report Joint Positions  

• Report Joint Velocities 

• Set Joint Effort 

Description:  

The input is the desired end-effector velocity state, specified in the vehicle coordinate system 

or the end-effector coordinate system, the current joint positions and joint velocities, and the 

data from the manipulator specifications report.  The output is the joint effort level that is 

sent to the Primitive Manipulator component.  It should be noted that in most 

implementations that this component and the Primitive Manipulator component would be 

embedded in the same node that will facilitate the control process.  Figure  5-25 depicts this 

component. 
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Figure  5-25 Manipulator End-Effector Velocity State Driver Component 

5.4.10 Manipulator Joint Move Driver Component (ID 58) 

Function:   

The function of the Manipulator Joint Move Driver is to perform closed-loop joint level 

control of the manipulator where motion parameters for each joint are specified.  The 

specified motion parameters are the desired values, maximum velocity, maximum 

acceleration, and maximum deceleration for each joint. 

Associated Messages: 

• Set Joint Motion 

• Report Manipulator Specifications 

• Report Joint Effort 

• Report Joint Positions  

• Report Joint Velocities 

• Set Joint Effort 

Description:   

The inputs are the desired joint values at specified time values together with data to define a 

trapezoidal velocity profile, i.e. the maximum joint velocity, maximum joint acceleration, 

and maximum joint deceleration.  No explicit path is defined, only the values of the joint 

angles at distinct times.  The time values are measured in units of seconds and are relative to 

the time that the movement to the first joint angle set is started. 
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 Additional inputs are the current joint values, joint velocities, and the data from the Report 

Manipulator Specifications message.  The output is the joint effort level that is sent to the 

Primitive Manipulator component.  It should be noted that in most implementations that this 

component and the Primitive Manipulator component will be embedded in the same node 

which will facilitate the control process.  The component is depicted in Figure  5-26. 
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Figure  5-26 Manipulator Joint Move Driver Component 

5.4.11 Manipulator End-Effector Discrete Pose Driver Component (ID 59) 

Function:   

The function of the Manipulator End-Effector Discrete Pose Driver is to perform closed-loop 

control of the end-effector pose through a series of specified positions and orientations. 

Associated Messages: 

• Set End-Effector Path Motion 

• Report Manipulator Specifications 

• Report Joint Effort 

• Report Joint Positions  

• Report Joint Velocities 

• Set Joint Effort 

Description:   
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This component performs closed-loop control of the end-effector pose as measured with 

respect to the vehicle coordinate system.  The inputs are a path motion description (discrete 

end-effector position and orientation at time t measured in the vehicle coordinate system 

which is defined by a point and a quaternion at time t), the current joint values, the current 

joint velocities, and the data from the Report Manipulator Specifications message.  The 

output is the joint effort level that is sent to the Primitive Manipulator component.  It should 

be noted that in most implementations that this component and the Primitive Manipulator 

component would be embedded in the same node that will facilitate the control process.  The 

component is depicted in Figure  5-27 in the vehicle coordinate system. 
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Figure  5-27 Manipulator End-Effector Discrete Pose Driver Component 

5.5 Environment Sensor Components 

5.5.1 Visual Sensor (ID 37) 

Function: 

The Visual Sensor component has the responsibility of controlling the camera(s) of a 

subsystem. 
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Description: 

Each camera has an associated coordinate frame.  The Z-axis of the coordinate frame is 

positive along the centerline of the camera lens, pointing toward the field of view.  From an 

observer looking through the camera, the X-axis is positive to the right and is in the 

horizontal plane of the image sensor.  The Y-axis completes the right-handed orthogonal 

coordinate frame. 

The visual component has the capability to control the positioning and orientation of a fully 

articulated camera mounting.  The visual component also provides the mechanisms to 

determine and set the imagery format, camera settings, and audio (if supported). 

5.5.2 Range Sensor (ID 50) 

Function: 

This component reports range data to requesting components.  The range data is measured 

relative to the platform coordinate system at the time reported. 

Description: 

The Range Sensor component provides information from proximity sensors for the purpose 

of object detection.  The Range Sensor shall output the locations of detected objects with a 

certain measure of accuracy.  The Range Sensor may consist of a single range sensor or 

multiple sensors.  With this most primitive sensor, raw data from the sensors are processed 

and formatted into standard, semi-raw data and returned when requested. 

5.5.3 World Model Vector Knowledge Store (ID 61) 

Function:   

The function of the World Model Vector Knowledge Store (WMVKS) component is to 

provide a central repository for system-, subsystem-, node-, and/or component-level vector-

formatted geospatial data. 

Associated Messages: 

• Create Vector Knowledge Store Objects 
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• Set Vector Knowledge Store Feature Class Metadata 

• Delete Vector Knowledge Store Objects 

• Query Vector Knowledge Store Objects 

• Query Vector Knowledge Store Feature Class Metadata 

• Query Vector Knowledge Store Bounds 

• Terminate Vector Knowledge Store Data Transfer 

• Report Vector Knowledge Store Object(s) Creation 

• Report Vector Knowledge Store Feature Class Metadata 

• Report Vector Knowledge Store Objects 

• Report Vector Knowledge Store Bounds 

• Report Vector Knowledge Store Data Transfer Termination 

Description:   

Storing and sharing of vector-formatted geospatial data is supported by the World Model 

Vector Knowledge Store.  The primary benefit of this world modeling method is that vector 

data typically require significantly less bandwidth to transmit as compared to raster data.   

For the vector knowledge store, objects are represented as points, lines and polylines, and 

polygons.  Figure  5-28 shows the format of these vector objects.  Polylines and polygons 

may consist of up to 65535 vertices.  Rather than assigning the points that make up these 

objects Cartesian coordinates with respect to an arbitrarily chosen datum, all points are 

expressed as points of latitude and longitude (WGS84).  

The vector objects on the right side of Figure 5.28 have a region buffer parameter.  The 

region buffer is defined as an offset distance in meters that establishes a radial region around 

each vector object vertex and connects the radial regions of two or more radial regions by 

drawing lines at their tangents.  The area within these radial regions and tangent lines are 

considered to be within the vector object’s buffer zone.  This buffer feature allows a region to 

be established in proximity to vector objects.  For example, United States Geological Survey 

(USGS) digital line graph (DLG) road data is presented in vector form representing the 

center-line of such roads.  It may be useful to search for objects within an area along a 

particular route defined in the digital line graph data.  For simple cases, it may be possible to 

generate a polygonal representation of the area around the road.  Establishing this polygon 

will require transmitting the coordinates of each of its vertices.  As the problem scales up, 

this method becomes very inefficient.  A better solution to this problem would be to 

determine the route using the DLG data and assign a region buffer to each line segment.   
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Figure  5-28 Vector Objects 

5.6 Planning Components 

This section provides a brief explanation of components that can be used for mission 

planning, coordination, and execution.  The components and their message sets provide 

detailed knowledge of the machine’s capabilities, the mission goals and objectives, and a 
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mechanism for conveying the plan to the primitives within the machine.  The Mission 

Planning, Coordination and Execution process for JAUS systems is graphically depicted 

below where the process, or pieces of the process, can be located and/or duplicated anywhere 

in the system.  The process allows for the generation and execution of complex mission plans 

made up of mobility, sensing, and payload commands. 

Figure  5-29 Mission Planning, Coordination, Execution Process 

5.6.1 Mission Planner 

The Mission Planner is being defined.  This section will be completed when the Mission 

Planner is complete. 

5.6.2 Mission Spooler (36) 

Function: 

The Mission Spooler provides a central location for mission plans during execution.  It is 

responsible for parceling out elements of the mission plan for execution by machine 

primitives. 
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Associated Messages: 

• Spool Mission 

• Run Mission 

• Abort Mission 

• Pause Mission 

• Resume Mission 

• Remove Messages 

• Replace Messages 

• Query Spooling Preferences 

• Report Spooling Preferences 

• Query Mission Status 

• Report Mission Status 

Description: 

The Mission Spooler is responsible for spooling mission plans.  A mission is a set of JAUS 

commands to be performed by one or more components on board one or more unmanned 

subsystems.  The mission structure is an N-ary tree, which allows for parallel, sequential, 

iterative, conditional, and coordinated mission plans and mission plan tasks.  Each mission 

has a unique ID allowing for multiple mission plans.  A mission plan is made up of tasks, 

which contain JAUS messages, and/or children tasks.  An 

example mission plan and corresponding mission structure 

follows: 

Mission Plan 0: 

 Waypoint 1 

  Path Segment 1* 

 Waypoint 2 

  Path Segment 1* 

  Path Segment 2* 

  

*A waypoint, in this example, is broken down into path 

segments by a higher level component (i.e. planner) 

 

A JAUS message within a mission plan can be blocking.  

The Mission Spooler shall not spool messages beyond a 

blocking JAUS message until the unmanned system has completed the action associated with 

the blocking JAUS message and a Mission Status message with the Message Finished status 

is received for that message.  Payload commands are a good example of where blocking 
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messages may be used.  Some payloads can only perform their functions (e.g. soil sampling, 

video image) when the robot is stationary while other payloads can (or must) perform their 

functions (e.g. start mine flail) while in motion.  The blocking lag ensures that no other 

messages are spooled until the blocking message is complete. 

Example configurations of the Mission Spooler follow: 

Figure  5-30 Mission Spooler Configuration Example 1 

 

Figure  5-31 Mission Spooler Configuration Example 2 

Subsystem 1:  Operator Control Unit (OCU) 
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Subsystem 3: Waypoint Driver (WD) 

The Mission Spooler on Subsystem 1 is coordinating multiple mission plans for two 

unmanned systems.  In the case of Subsystem 2, it sends the mission plan on to the Mission 

Spooler located on that subsystem which then parcels the plan elements out to the correct 

component.  Subsystem 3 does not have a Mission Spooler available, so Subsystem 1’s 

Mission Spooler parcels the plan elements out to the correct components on Subsystem 3. 

Messaging Requirements:   

The following requirements shall be followed: 

• The Mission Spooler shall not spool messages beyond a blocking message until a 

Report Mission Status message for Message Finished is received for the blocking 

message. 

 

Requirements for unsupported Mission Spooler messages: 

• If a component does not respond to the Query Spooling Preferences message, the 

Mission Spooler shall default to sending a Spool Mission message with 1 message at 

a time to the component. 

 

If a component does not support the Spool Mission message, the Mission Spooler shall 

default to sending the raw JAUS message to the component, 1 message at a time. 
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6 LIST OF ACRONYMS 

ASCII American Standard Code for Information Interchange 

DCP Document Control Plan 

DGPS Differential Global Positioning System 

DM Domain Model 

JAUS Joint Architecture for Unmanned Systems 

JTA Joint Technical Architecture 

LADAR Laser Detection & Ranging 

MP Mission Planner 

MS Mission Spooler 

NIST National Institute of Standards and Technology 

OCU Operator Control Unit 

PSD Path Segment Driver 

RA Reference Architecture 

SC(s) Service Connection(s) 

SI The International System of Units 

UGV(s) Unmanned Ground Vehicle(s) 

UAV(s) Unmanned Air Vehicle(s) 

USV(s) Unmanned Surface Vehicle(s) 

UUV(s) Unmanned Underwater Vehicle(s) 

VS Visual Sensor 

WD Waypoint Driver 

 

 


