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Introduction 

RoboJackets 

RoboJackets is the competitive robotics organization for students at the Georgia Institute 

of Technology. Founded in 1999 as a BattleBots team, the organization has grown to include the 

RoboCup Small Size League, the Intelligent Ground Vehicle Competition, the International 

Autonomous Robot Racing Challenge, and a large outreach team. Though the organization is 

chartered under the school of mechanical engineering, our members represent nearly every 

department on campus, predominantly computer science, mechanical engineering, aerospace 

engineering, and electrical engineering. Having first competed in IGVC in 2004, the RoboJackets 

have competed in every IGVC since 2006. 

Team Members 

Our team is organized into mechanical, software, and electrical subteams. Each subteam 

contributes designs, assemblies, and code per the requirements of the competition and other 

subteams. Table 1 shows a listing of our active membership. 

 
Table 1. RoboJackets 2017 IGVC Membership 

Name Role 

Noah Daugherty Project Manager 

Kelvin Chong Mechanical Lead 

Daniil Budanov Electrical Lead 

Matthew Keezer Software Lead 

Ryan Waldheim Electrical 

Ruoyang Xu Electrical 

Fengrui Zuo Electrical 

Choukri Nyon Electrical 

Yongjae Won Mechanical 

Dallas Downing Mechanical 

Jeff McKendree Mechanical 

Tomas Osses Mechanical 

Shane Kearney Mechanical 

Justin Zheng Software 

Jason Gibson Software 

Dominic Pattison Software 

Raymond Ortiz Software 

Jeremy Schonfeld Software 

Kenny Scharm Software 



Mechanical 

         The design for the 2016-2017 robot focused on creating a whole new machine and chassis 

that would be able to overcome the issues with the previous machine, Mistii, seen in Figure 1a. 

Those issues included: 

·        Imbalance with drive system in the back 

·        Being caught in potholes due to said system hindering flexibility 

·        Issues with inconsistent drive performance 

 
Left - Figure 1a. 2015-2016 Robot Mistii 

Right – Figure 1b. 2017 Robot Jaymi 

  

Design Premise 

         The vehicle is designed with an emphasis on keeping loads as close to centered and 

balanced as possible to avoid those issues with our previous machines. After many discussions 

and design sketches, it was decided to move in a new direction that RoboJackets IGVC hadn’t 

attempted recently. By placing the drive system in the center of the robot, we can keep the weight 

distribution from impacting performance as negatively as before. 

 



Chassis 

         The structure of the robot is primarily composed of 1”x1” square steel tubing and 1”x1” 

square aluminum tubing. (Figure 2) The lower section of the frame, henceforth referred to as the 

“main body,” was assembled with the steel through MIG welding, and it was painted over to 

prevent corrosion. The upper portion, known as the “mast,” was assembled through MIG welding 

aluminum. This was a key design change from before: in the past, the entire frame was created 

out of steel. After consulting with the software team, we quickly concluded that a change had to 

be made because the steel, being ferromagnetic, would cause the GPS to become disoriented. 

 
Figure 2. Frame 

  

         Because welding aluminum onto steel would be near impossible, the mast is attached 

onto the body via aluminum brackets instead. The batteries sit on one end while the payload and 

electronics tray sit on the other, providing a more balanced machine. The drive wheels sit in the 

center of the body, while our monitor and other components are mounted in the mast. The light 

and cameras would be on the mast as well, allowing a more center focused approach for our 

imaging software. 

  
  

Left – Figure 3a. Mast and Components  

Right – Figure 3b. Mast and Monitor 



Drive System 

         This robot’s drive system is very different from what has been done in the past. In the 

center of the machine, directly below the mast, are the 2 drive assemblies. 

 
Figure 4. Right Drive System 

  

         This is by the far most complicated mechanical system we have designed for our machine. 

Similar to previous designs, a chain and sprocket system was avoided due to inconsistent 

performance. This setup has the motor interfaced through a gear assembly that translates the 

force directly to the wheel. A combination of retaining rings and bearings are used to keep the 

gears in the proper positions. Keys and keyways were also crafted to allow for our decoupling 

mechanics, which will be discussed later. 

 
Figure 5. Gearbox and Gear Assembly 

         The suspension of the machine works through 2 control rods (seen in Figure 4) and a 

shock mounted directly on top of the gearbox. The control rods were threaded with opposite 

direction threads on each end, allowing for ease of adjustment. 

         The wheel is attached onto the axle via connecting plates and keys. Tolerances are tight 

in order to reduce the amount of wobble that may occur. 



Decoupling Mechanism 

         This year’s decoupling mechanism is very different from what was done in the previous 

assemblies. Instead of having a system on the outside of the wheel, this one was designed with 

the gears inside the gearbox itself meshing and moving apart. 

         
Figure 6a. Gears Decoupled            Figure 6b. Gears Coupled 

         As can be seen in Figures 7a and 7b, the gear in the center has a series of pins on it. 

These pins mesh directly into a series of holes within the gear in front. The gear with the pins sits 

on a bearing sleeve, allowing it to move freely on the center axle. The gear with the holes is bound 

to the axle with retaining rings, so that any movement by the axle will cause it to move as well. 

Since the motor interfaces and rotates the worm and worm gear, by pushing the bound gear off 

of the gear with pins, we effectively remove all power to the wheel. 

 
Figure 7. Decoupling Plates 

 

To achieve this kind of behavior, the center axle as noted above has plates attached to the 

gearbox. A pin sits within the rod, causing it to lock in place depending on how it is twisted. A 

spring forces the pin to stay within a specific region. 



 
Figure 8. Decoupling Plates, Opposite View 

The plates seen attached at the end of the axle in Figure 8 allow for easier turn of the axle. This 

reduces the danger of reaching under and having to trigger the mechanism manually. Instead, a 

tool and be used to couple or decouple the machine. 

Caster Balls 

         For this design, a less conventional approach was taken for the design of the forward and 

backward casters. After many discussions within the sub-team, it was very clear that “caster bias” 

would be a significant issue. Due to how a pivoting wheel would work, there would be major 

complications when rotating the machine. To combat this, a caster ball system was developed. 

These would sit on the front and back ends of the main body. 

                     
Figure 9a. Caster Ball Assembly                  Figure 9b. Overall Machine 

         A plate sits on top of the ball, and under the plate are ball bearings that allow the ball to 

spin in the assembly. A ring sits further down, and it also contains a series of ball bearings. A 

shock is attached to the plate and the frame body. The hinge seen in Figure 9a is mounted on the 

frame body as well. 

         There may be issues with the ball coming loose due to high elevated terrain. However, 

after a few tests, the weight of the robot’s overall body was able to prevent this from happening. 

Further issues have been mitigated by placing magnets under the plate.  



Ease of Maintenance and Safety 

         While creating a robot that can traverse rough terrain and follow the rules of the 

competition is important, keeping the machine easy to operate and maintain are also crucial for 

success. The following is a list of improvements made to facilitate maintenance and safety: 

·            A slide-able electronics tray was implemented to allow for a simpler method of access 

·          Folding panels in the cover for easy access to batteries 

·        Monitor mount onto the mast, reducing the need for software team to bend over to 

troubleshoot and software issues 

·        Decoupling mechanism with tool, eliminating need to reach under robot (preventing 

potential injuries) 

 

Electrical Design 

Overview 

 A major focus of the electrical subteam this year has involved offloading power 

components to a single, more compact electrical tray and more efficiently organizing the electrical 

construction of the robot. This allows the power system to remain distant from the sensitive robot 

sensors. A standardized coloring scheme was created, where every power cable’s voltage is 

assigned a corresponding color. Lastly, a Fritzing diagram (Figure 10) of the robot was 

implemented, which provides a clear and easily editable illustration of the entire electrical system. 

Power Distribution System 

Power is supplied by two Optima D35 12V automotive lead-acid batteries connected in 

series to provide 24 VDC to the system. Battery power is connected to a disconnect, which is then 

routed to the 24V rail on the Electronics Tray. A cable detaches from the connection node on the 

rail to connect the raw battery voltage through the normally-open e-stop solenoid to the Open 

Source Motor Controller (OSMC).  

 A 24-12V PYLE DC-DC converter attaches to the 24V rail and supplies power to devices 

connected to the 12V rail, including a light, the NUC computers, the LiDAR and the GPS. A 

separate set of XL4005 Buck DC-DC converters provides power to the onboard monitor. A 

LM7805 5V voltage regulator powers the 5V rail. 

Ultimately, all return connections are run through a shunt before being connected to the 

negative battery terminal. Measuring the voltage drop permits calculation of the instantaneous 

current through the system, which in turn allows the onboard battery monitor to estimate the 

amount of charge remaining on the battery. 

Every device is connected through an appropriately rated fuse to its respective voltage 

rail. Rails, voltage regulators, and motors/light controllers are all mounted on an electronics tray 

capable of sliding in and out of the body of the robot, whereas sensors and actuators are powered 

through extended wires, all run through wire guards attached to both the tray and robot frames. 



Four wire guards allow us to group wires carrying like currents together, thus limiting interference 

across wires. 

 A color standard is developed for all cables providing power to the robot. This has given 

us a much clearer, and therefore more easily repairable, electrical system. 

 

Figure 10. A Fritzing diagram of the electrical system. 

 

Electronics Suite Description 

Light Detection and Ranging (LiDAR) 

A LiDAR is a laser scanning device that identifies objects in a certain area and helps the robot to 

map the course. The LiDAR on Jaymi is the TiM551-2050001 device by SICK AG. It can scan a 

270-degree, 0.05 to 10 m circular sector area, identify objects within and return the distance to 

the objects. The data acquired from our LiDAR is then sent to the onboard NUCs for global 

mapping and path planning. 

 

Global Positioning System (GPS) 

An Outback A321 Dual Frequency GPS unit is placed in the center-left of the robot. It takes in 

both GPS and GLONASS signals and utilizes RTK (Real Time Kinematics) to enhance the 

performance of the positioning system. The GPS data is directed into the NUCs through a USB-

to-Serial converter to help set waypoints for path planning. 

 

Inertial Measurement Unit (IMU) 

An IMU measures the robot’s specific force and angular velocity. Jaymi is equipped with a 9DoF 

Razor IMU by Sparkfun. There is an ITG-3200 (MEMS triple-axis gyroscope), a ADXL345 (triple-

axis accelerometer) and a HMC5883L (triple-axis magnetometer) integrated in this model and 

thereby can give 9 degrees of inertial measurement. We use the data from the IMU to assist in 

processing data for global mapping and to find the robot’s pose. 

 



Camera 

A Logitech HD Webcam C920 is mounted on the top of Jaymi. It is capable of 1080p video 

recording. Jaymi uses the data input from the camera for line and obstacle detection. 

 

Computers 

In order to process sensor data, two Intel NUC5i3RYH computers are mounted on the robot. Each 

unit has an Intel i3-5010U processor, and USB 3.0 ports for high-speed data transfer. One NUC 

performs vision processing, and the other runs our path planning and sends commands to the 

motor controllers. 

 

Monitor 

Jaymi is equipped with an Acer FT200HQL 19.5" monitor and it interfaces with robot through 

HDMI. The monitor’s primary function is to help the software team work with NUC units when they 

are on the robot and cannot be accessed from external devices. 

 

Open Source Motor Controller (OSMC) 

The OSMCs are high-power H-bridge circuits controlling permanent magnet DC motors. The 

OSMCs, instead of heavy heat sinks used by many other types of motor controllers, use cooling 

fan to remove heat. Four OSMCs total are used and a pair of OSMCs jointly controls one motor 

on each side of the robot. 

 

Motor Shield 

A custom shield is mounted onto an Arduino Uno board. This shield receives inputs from the 

rotary encoders, and outputs a 12VDC signal to the OSMCs. The Arduino counts the encoder 

interrupts and outputs PWM, direction, and select signals, which are level shifted from 5 to 12 

VDC. 

 

Light Shield 

A custom shield is used to control the onboard lights. The light shield Arduino monitors the e-stop 

solenoid, and when the motor system is engaged toggles the onboard safety light. This shield 

also provides underglow functionality to the robot. 

 

Rotary Encoders 

The robot uses US Digital EM1 optical quadrature encoders to track its wheel revolutions. This 

information is fed to the PID loop running on the motor shield Arduino. 

 



Safety Devices  

 

Figure 11. The e-stop mechanism. 

 

 The robot is designed to contain stages that both assure that motor motion does not occur 

when undesired and halt the motor system should the robot run out of control, as shown in Figure 

11. Activating the Power Switch connects the batteries and the rest of the electronics. Initially, for 

the current to flow to the motors, the e-stop receiver must be wirelessly toggled and the e-stop 

lock button must be left in the un-pressed position. The receiver allows the robot to be halted 

remotely, and the button acts as a safety mechanism: should some error cause the robot to move 

backwards as a team member is writing code behind the robot, a press to this button will cut off 

all current to the motor system. Pressing the run button allows current to begin flowing through 

the e-stop solenoid mechanism, thus permitting the OSMCs and motors to be powered. 

Software 

 At the beginning of Fall 2016, the software subteam created a list of improvements to work 

on over the next year. After ranking these by priority, it was determined that the most important 

issue was the lack of both real world and simulated testing scenarios. Due to various problems, 

no robot was available to test software methods in real world scenarios for a significant portion of 

the year. Thus, it was decided a simulated testing environment was needed. 

After transferring the codebase from Qt to ROS (Robot Operating System) a year prior, 

there were many tools from the ROS toolkit to use such as ROS’s Gazebo. Gazebo uses the ROS 

communication framework and allowed the code to be linked with this environment in order to 

accurately simulate the robot’s sensors performance in a variety of course scenarios. In order to 

prepare for this implementation, the beginning of fall semester was spent updating to the newest 

ROS framework, Kinetic, and the newest Ubuntu distro, Xenial 16.04. The rest of the work was 

split into four groups: Gazebo, Path Planning, Vision Detection, and Mapping. 

 

 

 



Gazebo 

 A large amount of effort this year was put into working on creating a useful simulated 

environment in Gazebo. Since Gazebo is highly integrated with the ROS communication 

framework and the codebase also uses ROS’s latest communication framework, integrating our 

code with Gazebo was faster than expected. Thereby, the main effort was not spent on modifying 

our code but on creating a 3d world with sensors that perform as close to the real-world sensors’ 

performance as possible. 

The first task was to import a simplified version of the mechanical team’s CAD model of 

the new robot. A URDF file was then created that adds metadata to this mesh. This metadata is 

important since it tells Gazebo how these meshes should interact in the simulation. The main 

aspects of this include collisions and torque such as how the wheels move in the simulation. 

Another important aspect of the URDF is that it creates the virtual positions of the sensors 

such as the cameras in the Gazebo environment. Since the camera positions will be slightly off in 

practice, we have included a simulated error in Gazebo. This allowed for a more accurate 

simulation to see how our methods perform in real world scenarios.  

 

 
Figure 12. Gazebo Simulation Environment 

Path Planning 

 The pathing for the robot uses a kinematic model of a differential drive robot to generate 

nodes for a graph search dynamically. A* is used to search through all valid nodes and to 

determine what nodes to expand and thereby generate their children. The validity of a node is 

checked by seeing if, along the path from the previous node to that node, an obstacle is within a 

certain distance. There is both a hard and soft threshold for the robot in pathing. Any node created 



within a predefined distance of an obstacle is not considered or expanded by the graph search. 

Once a path is generated the relative costs are calculated using the soft threshold to weight the 

different paths and reward the paths that have the greatest minimum distance between their 

nodes and an obstacle. 

 

Vision Detection 

 Our vision detection methods are similar to last year’s vision detection techniques. 

However, similar methods in both line and pothole detection modules have been merged into a 

shared module. We also fixed an issue in how both modules were transforming their projections 

matrices and it has been improved by standardizing how each module calculates their transform 

using the transform tree. This also helps consolidate the data retrieved from the three cameras 

and LiDAR. 

Line detection follows the algorithm from last year by using a canny edge detector and 

redrawing the lines with probabilistic Hough lines. In addition to modifying the values that 

determine the thresholding in these algorithms, these values have been moved to separate config 

files that can be changed dynamically. 

 Pothole detection uses a similar method by thresholding the image and using 

Houghcircles to find circles in the image. The size, shape, and location of these circles are then 

checked and only the circles which are the most probable of being a pothole are retained. 

  

 
Figure 13. Line and Object Detection 



Mapping 

 Another important change this year was the addition of global mapping and a more 

efficient way of merging the point clouds together. Before this year, detected obstacles were 

mapped into a point cloud in the local reference frame of the robot. Since this is local to the robot, 

it must be redrawn on every update to find a new path. This is sub-optimal and has decreased 

processing efficiency. 

The solution is to use a global reference frame where obstacles can be drawn and 

assumed to stay in a fixed location if the position error is reliable. While this has improved the 

performance, and allowed the creation of a 3d map that remembers the history of the obstacle 

course, it comes with the drawback of causing any small error in the positioning to propagate 

dramatically. 

This has been negated, however, by having newer points match up to the older points 

using a radius search on an octree representation of these points and shifting the position frame 

by the average of these offsets using ICP. 

  

 

 
Figure 14. Mapping 
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Bill of Materials 

Item Value ($) Cost to Team ($) 2017 Cost ($) 

Steel Tubing 220 220 220 

Aluminum Tubing 100 100 100 

2x Dampers 1190 1190 0 

16x Clevis Rode Ends 200 200 0 

2x Gearbox 600 600 600 

2x Caster Ball 70 70 70 

Misc Mechanical 2500 2500 2150 

SickTiM 551 1920 1920 0 

Outback A321 GPS 7000 7000 0 

2x Optical Encoder 170 170 0 

2x DC Motor 900 900 0 

4x Motor Controller 820 820 0 

2x Battery 460 460 0 

2x Intel NUC 730 730 0 

DC Touchscreen 
Monitor 

190 190 0 

19V Power Converter 50 50 0 

12V Power Converter 15 15 0 

Razor IMU 75 75 75 

2x Arduino Uno 60 60 30 

Lioitech C920 Camera 70 70 70 

2x Logitech C270 
Camera 

80 80 80 

Headlight 250 250 0 

Safety Beacon 350 350 0 

E-Stop 80 80 0 

Wireless E-Stop 50 50 0 

Misc Electrical 350 350 60 

Total 18500 18500 3455 

 




