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Abstract. The RoboJackets RoboCup SSL team was founded in 2007
and has competed every year since. The main focus this year was taking
the lessons learned from our previous fleet of robots to design and build
an entirely new one. Areas of focus for the new robot design include: a
damped dribbler, more powerful motors, and increased robustness and
modularity of electronics. This paper outlines the improvements that we
have made in the new fleet’s design and the as well as improvements in
software.

1 Mechanical

For RoboCup 2015, the mechanical base of the RoboJackets robot fleet was
completely redesigned. The major goals for the mechanical team were to design
a more robust drivetrain, incorporate a damped dribbler, and develop a compact
flat solenoid. The team also emphasized creating designs which stress ease of
manufacturing to expedite the production of a new robot fleet.

1.1 Drivetrain

The drivetrain consists of three major components: the motor, the drivetrain
mount, and the omnidirectional wheel, all of which can be seen in Figure 1.

The 2015 drivetrain contains elements from the previous two generations of
robots: the 2008 and 2011 fleets. The drive gears are similar to the compact,
internal ring gear design from the 2011 fleet. The drivetrain mounts are also
fixed to the robot chassis in a manner similar to the 2008 fleet. The motors,
however, have been upgraded from 30W to 50W, which allows the robots to
achieve higher acceleration and better control.

Motors and Drive Gears The motors used on the robots are brushless DC
50W Maxon Motors (PN: 3392825x), each with a MILE Encoder (PN: 462003x)
integrated into the motor. Moving from the lower power 30W improved robot
mobility. These motors are larger and require more effort to integrate them into
the robot, however the encoders are integrated and otherwise would have been
added separately. The motors are custom ordered to have shorter shafts with a
flat section to constrain a small spur gear.



Fig. 1. Exploded view of the front-left Drivetrain assembly

The drive gears of the robot are a compact gear train, consisting of a in-
ternal ring gear and a spur gear with a 42:12 ratio. The team tested different
materials and manufacturing methods, and finally chose steel for its durabil-
ity and Electrical Discharge Machining for its accuracy. Information on other
materials and methods that were tested can be found on the team website [1,
RC15Motor&Gears].

Wheels Improvements were made to the omnidirectional wheels to provide
better traction for the robot, while also making the entire assembly sturdier.
Changes include:

1. Increasing the number of small rollers on the wheel from 15 to 18 rollers
2. Increasing the width of the rubber from 1/16” to approximately 1/8”
3. Incorporating two bearings in the wheel for a more rigid assembly.

Drivetrain Mounts For the 2015 fleet of robots, the primary goals were to
design drivetrain mounts to integrate the large 50W motors into the design, and
ensure that these mounts were easily manufactured. Ultimately, it was deter-
mined that injection molding was the most viable option, since it allowed for
complex geometry to be manufactured without significant overhead. The team
utilized in-house CNC machines to create the injection molds, and a small ver-
tical molding machine to mold components. Fatigue analysis was performed on
the drivetrain mounts - a cyclic load of 4m/s2 (due to rapid deceleration of the
robots) over 100,000 cycles was applied to the mounts in FEA simulation shown
in Figure 4. Analysis concluded that acetal - branded Delrin - was an appropri-
ate material for fabricating these components. This material possesses very high
stiffness and excellent dimensional stability compared to other plastics.



Fig. 2. Exploded View of the OmniWheel

Another important change is the angle at which the wheels are oriented.
The main idea of the omniwheels is to allow movement in all directions with
no particular disadvantages. In order to do so, the wheels were oriented as close
as possible to the ideal angle of 90◦. The angle of 83◦ (Figure 3) was achieved
by having the motors attach to the drivetrain mount shifted on the horizontal,
making them occupy not used space to the side of the solenoids.

Fig. 3. Demonstration of Angles Between Wheels



Fig. 4. Finite Element Analysis of a Drivetrain mount

1.2 Chipper and Kicker

In the 2015 fleet, the chipper and kicker both utilize a custom-made flat solenoid
in order to minimize space consumption. The chipper was also designed to pro-
vide a second point of contact on the ball when dribbling.

Solenoids A critical difference in the 2015 fleet as compared to the 2011 and
2008 fleets are custom-made rectangular solenoids. These solenoids were used in
both the kicker and chipper assemblies. The main advantage of these solenoids
is that they take less space than cylindrical solenoids. The rectangular solenoid
consists of a 3D printed ABS plastic center with two aluminum faces. The new
solenoids were tested against the cylindrical ones used in the older fleet. It was
determined that the momentum produced by the new solenoids is on average
5% greater than the old solenoids. In an effort to improve performance, a study
on casing was conducted. Silicon steel was extracted from old transformers and
formed into a shell around the solenoid. It was calculated that the performance
increased by 2.47% when only one sheet of 1/32” thick silicon steel was used [1,
RC15-FlatSolenoid]. It should also be noted that these silicon steel sheets have
anisotropic properties. This is important because the orientation of individual
sheets may change the effectiveness of the flux return path. Finally, the armature
of the solenoid was based on a mass-momentum study which concluded that the
theoretical highest efficiency is achieved by having the mass of the armature be
equal to the mass of the ball (46 g). Figure 5 shows the solenoid and the chipper
assembly.
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Fig. 5. Exploded View of the chipper. The green represents the ABS plastic body piece
of the Solenoid

1.3 Dribbler

The dribbler assembly has been improved for easier manufacturing and better
performance. The manufacturing was improved by designing parts that can be
easily cut on the water jet cutter. Figure 6 shows the breakdown of the de-
sign. The functionality improvements of the dribbler assembly consist of a wider
mouth and a damping feature. The mouth increased from 2.3” to 2.6” wide,
which allows the ball to be received from a greater angle and requires less preci-
sion on the side of software. The function of the damping assembly is to reduce
”bounce back,” allowing ball settling to be quicker. The damping is created by
a foam-spring combination mounted behind the dribbler, producing an almost
critically damped system.

2 Electrical

2015 marks a complete restructuring of the electrical subsystem of the robot.
The new design takes a modular approach for enhancing maintainability and
extendibility. The 2015 electrical subsystem is a modular system that consists of
a control board, a kicker board, a motor board, a radio board, and an mbed mi-
crocontroller. All electrical boards connect with the control board, which routes
logic signals between the mbed and peripheral boards. In order to make such a
system financially feasible, all boards are panelized prior to production and are
laser cut to the desired dimensions in-house.



Fig. 6. Exploded View of the dribbler.

2.1 Control Circuitry

The 2015 control board is a stripped-down version of the 2011 RoboJackets con-
trol board. This year, the Atmel SAM7S series microcontroller (AT91SAM7S256)
and its corresponding USB interface were replaced with ARM’s mbed platform
featuring an NXP LPC1768 microcontroller that uses a Cortex-M3 processor.
Improvements found in the mbed over the previous Atmel chip include support
for standardized thread-based multitasking and a C++ SDK. Additionally, the
mbed Cookbook1 features a large collection of community-maintained software
libraries for common components and interfaces that are used in the 2015 elec-
trical system. The mbed plugs directly into the control board for easy removal
of the device.

The control board retains Xilinx’s Spartan-3E FPGA used in previous ver-
sions of the control board. The FPGA communicates with the mbed via an SPI
bus and is responsible for low-level motor controls and encoder tick counting.
Since the encoders used on the 2011 robots supplied a single-ended signal, the
FPGA’s control subsystem was updated this year to support the differential sig-
nal from the updated encoders. This is achieved using an EIA-422 receiver for
the incoming differential signals from the encoders.

With the league’s field size expansion and the resulting drive motor upgrade,
a new battery was needed for providing a higher voltage to the motors. The
previous 4-cell lithium polymer batteries were replaced with 5-cell ones to in-
crease the system’s nominal voltage from 14.8V to 18.5V. The power distribution
circuitry was changed to accommodate the robot’s higher input voltage.

The new control board features an improved hardware status feedback inter-
face, which consists of LEDs placed in close proximity to each circuit subsection.

1 http://developer.mbed.org/cookbook/Homepage



Should the firmware detect a hardware error, the corresponding LED will be il-
luminated. The mbed interfaces with the LEDs via an I/O expander.

2.2 Motor Driver Circuitry

As was mentioned in the Drivetrain section of this document, the 2015 fleet uses
new 50W 3-phase brushless motors from Maxon. This is in contrast to the 30W
models used on the 2008 and 2011 fleets. As such, the motor driving circuit has
been redesigned to handle the power increase. All drive motor circuits have been
migrated to a separate board to allow design flexibility. This change reduces
cost for any minor changes in any of the subsystems. Furthermore, this setup
allows for a more intuitive debug process through the use of the board-to-board
connectors.

The updated 3-phase driver circuit retains the dual n-FETs discussed in last
year’s RoboJackets TDP [5], but it also introduces TI’s DRV8302 that replaces
the three FET drivers, which were used to drive each phase individually. The
DRV8302 also features over-current, over-voltage, under-voltage, thermal, and
shoot through protection. This is expected to greatly reduce damage to the FETs
that was common on the 2011 control boards.

2.3 Kicker Circuitry

The 2011 design used two 2700µF aluminum can electrolytic capacitors to store
the electrical energy. Mounting large capacitors vertically made maintenance of
the boards very difficult. In the 2013 design phase, the two large capacitors were
replaced with three 820µF capacitors and mounted in the plane of the board.
For the 2015 design, the kicker board was required to have a reduced size to
provide room for the larger motors. Directly mounting capacitors on the kicker
board requires excess board space due to mechanical constraints. Short wires
were thus used to connect the capacitors to the board without significantly
increasing the resistance and inductance between the source (capacitor bank)
and load (solenoid).

Lastly, in order to improve kicker functionality and safety, we are adding
an Atmel ATtiny microcontroller to the kicker board. In the 2011 kicker board
the two ways to discharge the energy stored in the capacitors were to fire the
solenoid or slowly dissipate the energy through a set of bleeder resistors. Having
a microcontroller on the kicker board allows for improved safety logic when there
is no active connection with the mbed. The ATtiny will communicate with the
mbed via SPI. Initially, this will be used to receive control commands and report
the charge level to the mbed. However, in the future, it will be possible to greatly
enhance data collection via firmware upgrades.

2.4 Radio Circuitry

In the 2015 revision, radio hardware is sectioned out to a separate board, which
is directly attached to the control board over an SPI connection. The new radio



board features a chip antenna that replaces the large halo antenna used previ-
ously and is shown in Figure 7. Chip antenna technology has advanced since
the halo antennas were manufactured in 2008, so an improved selection of chip
antennas can be found today [4]. A similar radiation pattern is achieved using
the much smaller footprint. Since few obstacles exist at the physical layer for
the application of the Small-Size League, no drops in system performance are
expected.

The radio’s central component that is paired with the chip antenna is TI’s
CC1201 transceiver. It is an updated version of the CC1101 that provides support
for 4-GFSK modulation to increase communication rates over currently used 2-
GFSK modulation. The transceiver will be paired with a dual-antenna base
station.

Fig. 7. The new radio design that will replace the previously used halo antenna.

We are choosing to continue communicating in the sub-1GHz industrial, sci-
entific, and medical (ISM) radio bands for providing the low latency, low through-
put communications. Although the sub-1GHz bands limit the radio channel’s
bandwidth, the less-crowded frequency space provides improved reliability com-
pared to the 2.4GHz and 5GHz bands.

3 Software

The major software focus over the last year has been redesigning and rewriting
the high-level code responsible for gameplay.

3.1 Previous Gameplay System

The previous gameplay implementation was written in C++ and based on the
Skill Tactic Play (STP) paradigm, as described in [2]. STP is a gameplay ar-



chitecture that involves splitting up behaviors into three main categories: skills,
tactics, and plays. Skills are low-level behaviors that use a single robot, such as
capturing the ball, kicking the ball, and marking an opponent player. Tactics
are higher-level than skills and often involve coordinating behavior among two
or more robots. Example tactics include passing and coordinated defense. Plays
are behaviors that describe the behavior of the entire team of robots. They rely
on skills and tactics to do most of their work and are mainly responsible for the
coordination between the different sub-behaviors.

The STP architecture is effective because it encourages high code re-use and
provides a framework for organizing high-level gameplay code.

The main downside to our previous implementation was the slowness of the
development cycle of writing new plays and behaviors. Developing a new play is a
very iterative process that involves getting a basic version working, then contin-
ually tweaking the code and testing it until it is complete. With the old system,
each iteration required exiting the soccer program, recompiling the codebase
(which could take upwards of a full minute), relaunching soccer, then selecting
the play and telling it to run. This iteration cycle was incredibly inefficient and
made it a painstakingly slow process to develop, debug, and test new gameplay
code.

3.2 New Gameplay System

Due to the issues with the current system, the team set out to solve these prob-
lems and design a new gameplay system. The first decision made was to port the
high-level parts to an interpreted language to avoid the need to recompile and
relaunch the program each time changes were made to a play. Other teams have
taken similar approaches and written their high-level code in a scripting lan-
guage. Based on other teams’ TDP’s, Lua seems to have been a popular choice
for many [6] due to the ease of embedding it in a C/C++ application. Another
good option for scripting languages is Python. This ended up being the final
decision due to its familiarity for students at Georgia Tech and the availability
of language bindings to C/C++.

Python The Python gameplay system was implemented by embedding the
Python interpreter in the main C++ application. The boost-python library was
used to create Python wrappers for the relevant C++ classes, which formed a
Python module that was loaded into the interpreter. Creating wrappers for C++
classes turned out be fairly easy and essentially required declaring which classes
should be wrapped and what methods should be made available to Python code.
The Python entry point is called approximately sixty times per second from the
main C++ runloop.

The dynamic nature of Python greatly reduced the development time of new
plays and behaviors. The previous system required a time-consuming cycle of
recompiling, relaunching, and rerunning. The Python-based gameplay system
allows a developer to have the soccer program open while making live changes



to the running play. Changes made to a play’s Python file are automatically
loaded causing the play to change in real time. Reducing the testing cycle for
gameplay code from minutes to seconds has made development incredibly more
productive.

As part of the STP architecture, the behaviors running at any given time
form a tree structure with a play at the root and skills at the leaves. One feature
that has been implemented on top of this is dynamic role assignment. The role
assignment system recursively traverses the behavior tree, accumulating a tree
of role requirement descriptors from the skills currently running. These descrip-
tors specify both the preferred and required factors for matching a robot to a
particular role. This includes things such as location on field, ability to kick, and
the robot’s shell id. The gameplay system asks the play for the role requirements
tree, then builds a cost matrix containing the cost for each robot-role pair. The
Hungarian algorithm [3] is then used to create an optimal overall matching to
assign robots to their behaviors. By incorporating robot assignment into the
gameplay framework, development of individual behaviors is made much easier.
A behavior simply defines the necessary qualities for a robot to execute the be-
havior and the assignment system takes care of the rest. For example, the goalie
behavior specifies a required shell id, therefore any robot without that shell id
receives an infinite cost, ensuring that it is never chosen. Another example of
this system in use is our implementation of the double-touch rule, which states
that a robot can not touch the ball consecutively. A tracker is set up to detect
ball touches and send the shell id of the robot (if any) that last touched the ball
to the role assignment subsystem. This prevents the robot from being assigned
to any behavior that requires touching the ball.

Hierarchical State Machines One design idea that is found throughout the
new Python-based gameplay system is that every behavior class is a Hierar-
chical State Machine (HSM). The previous gameplay implementation had state
machines in several places, but they did not share a common interface. This
meant that sharing state information between behaviors was difficult. In the
new implementation, every behavior has a few states that they inherit from the
root superclass: start, running, completed, failed, and canceled. Subclasses can
freely create their own states, but they are required to be substates of these.
This creates a form of polymorphism that provides a common interface to ev-
ery behavior throughout the system. One way that we have made use of this
common interface is to create several generic ”container” behaviors such as:
TimedBehavior, and SequenceBehavior. TimedBehavior accepts a behavior as a
parameter and allows it to run for a specified time limit. If it exceeds this limit,
TimedBehavior cancels its subbehavior and enters the failed state. SequenceBe-
havior accepts a list of subbehaviors and runs them one after another, entering
the completed state if successful. It is due to the rigid state-machine structure
of the system, that generic behaviors like these are able to be implemented to
encapsulate common patterns.



Another benefit of state machine-based design is that it is much simpler and
clearer to analyze the logic of each behavior. A new textual output has been
added to the soccer GUI showing the hierarchy of behaviors, including current
role assignments and behavior states. In addition, we have written a script that is
able to load every behavior and, using graphviz, export a state machine diagram
of each one. Figure 8 shows an example of the diagrams this script produces.

Fig. 8. Automatically-generated state machine diagram of ”PivotKick” behavior.

Disadvantages Although the new gameplay system is far superior to our pre-
vious implementation, it does have some disadvantages. The main disadvantage
is that due to the dynamic nature of the Python language, there are often er-
rors encountered at runtime that could have been caught at compile-time in a
compiled language. This becomes a problem if it is encountered during compe-
tition because a small typo can render an important play useless. In order to
help prevent this, a Python code linter is run after each code change to aid in
catching errors. This has mitigated most of the problems the team has seen, but
is not 100% effective. Additionally, the gameplay system avoids running plays
that have recently encountered exceptions.

Another disadvantage to the new gameplay system is performance. The new
Python implementation is noticeably slower than the previous C++ implemen-
tation. Some of the gameplay framework that was first written in Python has



since been ported back to C++ for performance reasons, although the majority
of gameplay code will remain in Python.

3.3 Robot Firmware

Changing to the new mbed control platform required significant changes to the
robot firmware. The primary advancement over the previous iteration is the
inclusion of the Cortex Microcontroller Software Interface Standard (CMSIS).
More specifically, the CMSIS-RTOS component of the standard was used to pro-
vide multitask operations between the robot’s control loop and radio commu-
nications. Radio receptions are implemented using an interrupt service routine
that is built upon a generic Communication Module firmware component. This
component provides an abstraction layer between the low-level radio driver code
and the higher-level packet handling logic. In other words, it enables the controls
subsystem of the robot to view a packet and the packet’s physical communica-
tion link as independent entities. Additionally, the Communications Module is
able to handle multiple radios on a single robot, should the extra throughput be
necessary in the future.

With the addition of an Atmel 8-bit AVR microcontroller (ATtiny441) to the
kicker board, there are now three different programs that must be configured to
the robot: mbed, ATtiny, and FPGA. The mbed and ATtiny components must
have a binary file written to their internal flash memory while the FPGA must be
configured at every startup from the mbed’s on-board flash storage. In order to
expedite this process, the mbed’s firmware checks the ATtiny’s firmware version
against up-to-date files stored on the mbed’s flash storage. If necessary, the mbed
will re-flash the ATtiny at startup.
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