
RoboJackets 2007: Small Size League

Andy Bardajagy, Stuart Donnan, Jason Kulpe, Phillip Marks, John
McConville, Roman Shtylman, Ryan Stewart, and Scott Travis

alphabetical

andyb@gatech.edu, stuart@gatech.edu, gth722p@mail.gatech.edu,

phillip.marks@gatech.edu, gtg346y@mail.gatech.edu shtylman@gatech.edu,

gtg097y@mail.gatech.edu, scorpio@gatech.edu

http://www.robojackets.org

RoboJackets, Georgia Institute of Technology,
Atlanta Ga 30332, USA

Abstract. We are an undergraduate student organization at the Geor-
gia Institute of Technology. Our goal is to develop a starting platform
of knowledge and experience for further development in the comming
years of RoboCup competition. The direction of the project is to lay
the groundwork and have a basic system ready to compete for the 2007
Small Size League.. . .

1 Introduction

The RoboJackets RoboCup team is composed of undergraduate members of the
Georgia Tech RoboJackets robotics club. While this will be our first year of
competition in the small-szie league this certainly isn’t the first year the Georgia
Tech has participated in a RoboCup event. In previous years there was another
team in the four-legged league that was sponsored through the College of Com-
puting. We hope to build on thier efforts for this years competition.

The team is comprised of three parts, the mechanical design team, the elec-
tronical and vision design team, and the software design team. The mechanical
team designned the robot’s base and shooting and dribbling mechanism; while
the electrical and vision team desingned the on robot hardware and vision al-
gorithms. The software design team interfaced the vision and electrical systems
using a potential fields naviagation algorithm and simple set of AI code.

2 Mecanical

2.1 Introduction

The Mechanical team consists of four Mechanical Engineering undergraduate
students. Our primary goal was to design and build a robust platform. The idea
was to design and construct the robots quickly enough to leave the electrical
and programming groups a sufficient amount of time to test and implement the
software and more complicated algorithms.



2.2 Design Overview

Drive Train Our team will utilize 5 identical robots, each with four omni-
directional wheels (2 in diameter) controlled by Maxxon DC motors for navi-
gation, a solenoid to operate the kicking mechanism, and a smaller DC motor
to control the dribbling subsystem. We designed the robots to have enough ac-
celeration to traverse a third of the length of the field in one second starting
from rest equating to a 3.2 m/s final velocity. We decided that a rapid accelera-
tion was necessary in order for the robots to be able to sufficiently react to real
time changes in the game. The DC motors were chosen to the specification listed
above. Also, DC motors were chosen, as opposed to brush-less motors, because of
the simple programming needed to control them. The selected motors contained
ample power and a sufficient 14:1 ratio provided by the complementary gear
box. As shown in Figure 2, the motors are installed vertically giving plenty of
interior room for the kicker assembly and batteries. The group decided to place
the motors in a skewed configuration resulting in a 60 degree angle between
two motors on each side, relative to each other. This solution was chosen over
an orthogonal wheel configuration to give more power for driving in a direction
perpendicular to the kicking surface. This drive wheel angle sacrifices power for
moving parallel to the kicking surface, but this sacrifice is acceptable; putting
more focus on rotating then driving in the desired direction. The angled wheels,
in addition to the vertical motors give ample room for ball control.



Ball Control The robot will control the motion of the ball through the use of a
dribbler mechanism and a kicker plate. The horizontal dribbler is controlled by a
DC motor mounted directly behind the dribbler. The kicker plate consists of an
aluminum plate actuated by a solenoid. The most interesting part of this system
is the geometry of the kicking plate. The surface of the plate that will make
contact with the ball contains a parabolic curve to help ensure the direction of
travel of the ball is consistent with numerous kicks.

3 Electrical

We’ve designed our electrical system this year to give us a strong system on
which to base future designs. It consists of six subsystems: the wireless modules,
the motor controllers, as set of sensors, a micro-controller, a CPLD, and a kicker
solenoid drive circuit. A diagram of the system is shown in figure x.x.

The wireless system consists of an Linx HP3 series transmitter and receiver,
both in the 900MHz band. A serial asynchronous protocol operating at 56kbps
is implemented on these devices with each packet containing a 16-bit header
followed by a variable length data payload and 16-bit checksum. The bulk of
communication is from the host controller to the robots in the form of 154-bit
muli-cast messages sent at 60 hertz. These messages contain the x and y velocity
being commanded by the host along with an angular rate. Each robot sends back
to the host information such as whether or not it has the ball at a much slower
rate of 10 hertz.

The four main motors are driven by an H-bridge motor driver capable of de-
livering 5A at 46V while the dribbler is turned on or off by a MOSFET switch.
A shaft encoder giving quadrature output pulses is used along the commanded
velocity gyro are used to implement PID feedback control on the motors to ad-
just their output.

A set of infrared LED’s operating at 32kHz with a 50% duty cycle are used
in conjunction with a receiver to detect if the ball is near the robot. The LED’s
are placed so that their signal reflects off the ball and towards the receiver. An
ADXrs-300 gyro is used to measure the robot’s rate of angular rotation. This
rate is feed into the PID loop to control angular rate.

A CPLD in conjunction with a Phillips LPC2138 ARM based micro-controller is
used to coordinate the on-robot electronics. The LPC2138 implements the serial
protocol, handles sensor interface, and runs the PID control loop. It is helped by
the CPLD which interfaces with the encoders converting the quadrature signal
and re-transmits it to the LPC2138 as a velocity over SPI.

For the qualification video a simple prototype of the electrical system was
built using a second ARM instead of the CPLD and without the sensors and
encoders. Using the knowledge gained from this prototype we hope to improve



on our design. With the base system we’ve built this year we hope to add such
capabilities as on robot sensing.

4 Vision

4.1 Introduction

Often, the most important midlevel image processing task is to group pixels or
groups of pixels into regions based upon some shared trait such as texture, color
or luminance. Color is generally regarded as the most resilient and significant
trait of an object and therefore the most often used segmentation metric. There
are many approaches to this task including linear color space thresholding, near-
est neighbor classification, probabilistic methods, and constant thresholding.

Linear thresholding works by partitioning the color space into strata with linear
boundaries. The pixels are then classified according to which partition it lies in.
This is convenient for learning algorithms such as neural networks or multivari-
ate decision trees [2].

Another approach is to use nearest neighbor classification. First, several hun-
dred tokens are precomputed which have a unique location in the color space
and an associated classification with a particular segment. Then, the nearest K
tokens are found and the pixel is characterized by finding the largest proportion
of classifications of the neighbors [2].

Probabilistic methods such as expectation maximization use similar techniques
as nearest neighbor classification where instead of tokens, probability distribu-
tions, which lie within the colorspace, are precomputed for each segment. Then,
the distributions are used to place pixels into the segment which has the high-
est probability of containing it. Unfortunately, linear thresholding and nearest
neighbor color segmentation require the examination of every pixel in the im-
age for every color segment. This implies O(n*k) computation are required to
segment an image with n pixels into k segments. With excess of 100 frames per
second, and cameras in the megapixel range, color segmentation can easily over-
whelm the most advanced modern processors [3]. Clearly another approach is
necessitated.

4.2 Description of the Segmentation Algorithm

While segmentation is generally considered a monolithic vision task, several com-
ponents are necessitated to increase the accuracy, robustness and speed of the
segmentation. First, the image must be preprocessed to convert the colorspace
to one which is less affected by illumination changes. Next, linear threshold-
ing segmentation is used to characterize the pixels as one of several predefined
groups.



4.3 Colorspace Transformation

The proposed approach involves thresholding in a three dimensional colorspace.
There are several different models to represent color including HSI (Hue Satura-
tion Intensity), YUV (luminance, blue chrominance, red chrominance) and RGB
(Red Green Blue). Most cameras and imaging software use the RGB colorspace
making it a natural choice for colorspace classification. However, as the lighting
in the scene changes, the apparent color will shift. That is, a lighting change will
cause a change in the point in the three dimensional colorspace. However, either
HSI or YUV colorspaces can be chosen to restrict or eliminate the color shifts
due to lighting changes [4]. That is, in both the HSI and YUV colorspaces, the
chrominance and luminance components are separate dimensions. Therefore, the
luminance dimension can be discarded to yield a two dimension colorspace that
is luminance (and therefore lighting) independent. The YUV colorspace will be
employed as it is a more common standard then HSI.

Since most cameras (and the simulation software more on that later) output
data in RGB format, it must be transformed into YUV format where only the
chrominance components will be kept. Mathematically, it is a one to one linear
mapping where every point in three dimensional RGB space is mapped to two
dimensional chrominance space (luminance Y is discarded). Where the transfor-
mations are given as

4.4 Thresholding

As previously mentioned, a linear thresholding approach will be taken as it
should be the lightest, fastest and most efficient thresholding algorithm. In this
approach, linear thresholds within our two dimensional color model will be pre-
computed. These thresholds are represented as rectangular regions within the
UV colorspace. To ensure each pixel is classified uniquely, the threshold regions
will not overlap. The pixel is classified according to which region in the col-
orspace it lays.

In traditional linear thresholding, the pixel is compared to a minimum and max-
imum value for each dimension of the colorspace. Even limiting the colorspace
to two dimensions, a minimum of four comparisons per pixel per segment color
would be required to segment the image by thresholding.

Rather then thresholding integer color values, a bitwise comparison approach
will be employed as set forth by J. Bruce et. al.[5]. That is, the thresholding
colors are boolean value decomposed and stored as an array of discretized levels.
This implies a simple bitwise AND of the elements of each array indicated by
the pixel color component values.

Take the following example. The threshold ”orange” could be represented by
the following discretized arrays.



U = [0 0 1];
V = [0 1 1];

To check if a pixel with color values (3,2) is a member of the ”orange” seg-
ment, U(3) is ANDed with V(2). The result is true. That means the pixel is a
member of the segment ”orange”. The true speed increase comes when multiple
comparisons are made concurrently. If the threshold ”blue” is represented by the
following arrays

U = [0 1 0];
V = [0 0 1];

Then the ”blue” and ”orange” threshold arrays can be combined to form

U = [00 01 10];
V = [00 10 11];

Now to compute a pixel’s membership in either the ”blue” or ”orange” seg-
ments, only a single AND operation is necessitated. If the pixel has color values
(3,2), U(3) AND V(2) yields 10 meaning the pixel is a member of the ”orange”
segment and not the ”blue” segment. As many segments can be computed as
the length of the constituents of the arrays. Using this scheme, bitwise paral-
lelism is exploited to reduce the number of comparisons to linearly threshold
dramatically.

4.5 Clustering

As in the implemented paper [1], simple four connectedness grouping is used
to group pixels into clusters. That is, pixels which are touching on either their
north, south, east or west edges are considered to be in the same group. Clus-
tering was not considered an integral part of the paper, nor my implementation
as quicker methods have been developed.

Once the clusters were computed, their centroids were found. Other statistics
could be computed about each cluster, such as color variance, or average color.
These features, while trivial, are unnecessary for our planning and navigation
algorithms and therefore were not implemented.

4.6 Implementation

The algorithms were first implemented in MatLab (fairly straightforward). The
MatLab prototypes were nice, and showed the algorithm worked, however their
performance was nowhere near real time. Next, the thresholding algorithm was
implemented on an Altera Cyclone EP1C6Q240 FPGA by adding single instruc-
tion, multiple data (SIMD) instructions to the NIOS II core. The development



was done on a UP3 dev kit which has one megabyte of flash and two megabytes
of ram. This is unfortunately not enough for more then one image. Additionally,
there are no high-speed interfaces on the board. This implies a custom FPGA
board will have to be manufactured. Currently, a custom PCI card with a Xil-
inx Vertex 4 FPGA, two Firewire interfaces, and one gigabyte of ram is being
designed. Plans include writing preliminary software in C, and there is potential
to port it to the GPU.

4.7 Results

5 Software

The focus of the software team has been to develop a simulation environment
for testing and implementation of control ideas and code. The rational for the
focus is the lack of mechanical components in the early stages. It has since grown
to become a test base for control ideas and a stepping stone for high-level AI
strategy development and testing. Software can be thought of as a combination
of two components: simulation and control.



5.1 Simulator

The Simulator is a client/server framework for the creation and testing of our
code. The server aspect contains a physics simulation and a game-play manager,
while the client contains the control code. This allows the server to maintain
control of all the referee controls, physics, and client communication. This fur-
ther ensures consistency and allows the client to worry about the higher level
code.

To communicate with the server, the client must implement the server’s pro-
tocol. It is a three socket protocol for communication. The primary connection
is TCP from the client to the server over a given port the server is listening on.
The two secondary connections are UDP. One is for the radio data sent from
the client to the server, and the other is for camera data sent from the server to
the client. This allows the client and server to communicate these signals simul-
taneously and have them handled at the appropriate times.

The server’s role is to accept client connections and communicate with the client
about game-play and field data. It is the responsibility of the server to control
the physics and facilitate the control of robots for the client. The server starts
games once clients are connected and allows the client to run though scenarios
quickly and see the result on the client side.

Once a connection to the server has been established, the client must actively
receive camera data and send out radio data to the robots. It can also use the
provided open-gl rendering library to draw the camera data for easy debugging



and idea testing. The client also contains the control code as well as the higher
level decision code.

For our system a hierarchical software architecture will be implemented. The
modules will include the low-level interface, the potential fields navigation, a
simulated robot controller, and the AI system. The camera receives data on the
state of the field and makes predictions on the robots and the ball’s locations
and velocities between frames using a physic model based on the simulator. The
AI system functions as a coach calling plays based on the state of the field from
this model. Each play is defined as an initial formation and a set of schema for
each robot. The schema given by the coach will include tasks such as acquire ball
and the set of behaviors necessary for accomplishing these tasks. Each task can
be interpreted by the robots as goal states based on their own positions and/or
internal states. The behaviors are derived from the tasks and premises such as
move towards ball. The actual motion towards the physical positions are defined
by either the tasks or the behaviors given to each robot and is implemented
using a potential fields algorithm. In this algorithm, the goal has an positive, at-
tractive potential, while the other robots on the field have a negative, repulsive
potential. The path is determined by summing weighted vectors representing
these potentials, and then the sum is applied to the robots current heading. The
interface to the robots is done using the protocol developed specifically for the
wireless system. A possible means of training the AI coach to assess which plays
to execute for any given state will be the utilization of reinforcement learning
algorithm based on Q-value optimizations. The AI coach will be evaluated and
refined depending on matches against an opponent AI, which will be designed
based on data provided by human players.

6 Future Development

6.1 Mechanical

Our first priority is to install the motors and kicking mechanism which allows
us to begin testing our drive train and some of our navigation algorithms. We
will experiment to determine the optimal kicking configuration, kicking speed,
and solenoid power. Further experimentation will be done with the dribbler
mechanism. These experiments will test for the optimal speed and geometry of
the dribbler. In addition, we will test several materials to find a sufficient exterior
covering for the dribbler to provide smooth and consistent control of the ball.
A prototype robot has already been assembled, and now we are beginning the
testing phase for the parameters previously mentioned.

6.2 Software

In the future, as a means of enhancing each robot’s capabilities, tasks and be-
haviors will be implemented on each robot with respective positions being fed



continuously to them through the wireless system. In this system the robots
themselves would generate their own paths themselves depending on plays se-
lected by the AI coach. These robots would act with greater independence.

7 Conclusion

The RoboJackets are entering thier first year of competition in RoboCup and
look forward to not only competeing but also to being the host school for 2007.
We have already designned and built one protoype testbed and we hope to take
the lessons learned in this prototype and implement them on a possible second
revision. Our software team has already gained some experience working with
the simulator and are working towards building the final software. The electrical,
vision, and mechanical teams have also had some experience in development of
the prototype.

8 References

J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color image segmetation
for interactive robots. Proc. Int. Conf. Intelligent Robots and Systems (IROS),
Takamatsu, Japan, 2000, pp. 20612066.

C. E. Brodley and P. E. Utgoff. Multivariate decision trees. Machine Learn-
ing, 1995.

T. A. Brown and J. Koplowitz. The weighted nearest neighbor rule for class de-
pendent sample sizes. IEEE Transactions on Information Theory, pages 617619,
1979.

W. Skarbek and A. Koschan. Colour image segmentation a survey. tech. rep.,
Institute for Technical Informatics, Technical University of Berlin, October 1994.

P. Jonker, J. Caarls, and W. Bokhove. Fast and accurate robot vision for vi-
sion based motion. Lecture Notes in Computer Science, vol. 2019, pp. 149-153,
2001.

M. Asada and H. Kitano. RoboCup-98: Robot Soccer World Cup II. Berlin,
Germany: Springer-Verlag, 1999, Lecture Notes in Artificial Intelligence.


